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Genome-wide association study of 14,000
cases of seven common diseases and
3,000 shared controls
The Wellcome Trust Case Control Consortium*

There is increasing evidence that genome-wide association (GWA) studies represent a powerful approach to the
identification of genes involved in common human diseases.We describe a joint GWAstudy (using the Affymetrix GeneChip
500KMapping Array Set) undertaken in the British population, which has examined,2,000 individuals for each of 7 major
diseases and a shared set of ,3,000 controls. Case-control comparisons identified 24 independent association signals at
P, 53 1027: 1 in bipolar disorder, 1 in coronary artery disease, 9 in Crohn’s disease, 3 in rheumatoid arthritis, 7 in type 1
diabetes and 3 in type 2 diabetes. On the basis of prior findings and replication studies thus-far completed, almost all of these
signals reflect genuine susceptibility effects. We observed association at many previously identified loci, and found
compelling evidence that some loci confer risk for more than one of the diseases studied. Across all diseases, we identified a
large number of further signals (including 58 loci with single-point P values between 1025 and 53 1027) likely to yield
additional susceptibility loci. The importance of appropriately large samples was confirmed by the modest effect sizes
observed at most loci identified. This study thus represents a thorough validation of the GWA approach. It has also
demonstrated that careful use of a shared control group represents a safe and effective approach to GWA analyses of
multiple disease phenotypes; has generated a genome-wide genotype database for future studies of common diseases in the
British population; and shown that, provided individuals with non-European ancestry are excluded, the extent of population
stratification in the British population is generally modest. Our findings offer new avenues for exploring the pathophysiology
of these important disorders. We anticipate that our data, results and software, which will be widely available to other
investigators, will provide a powerful resource for human genetics research.

Despite extensive research efforts for more than a decade, the genetic
basis of common humandiseases remains largely unknown. Although
there have been some notable successes1, linkage and candidate gene
association studies have often failed to deliver definitive results. Yet
the identification of the variants, genes and pathways involved in
particular diseases offers a potential route to new therapies, improved
diagnosis and better disease prevention. For some time it has been
hoped that the advent of genome-wide association (GWA) studies
would provide a successful new tool for unlocking the genetic basis
of many of these common causes of humanmorbidity andmortality1.

Three recent advances mean that GWA studies that are powered to
detect plausible effect sizes are now possible2. First, the International
HapMap resource3, which documents patterns of genome-wide vari-
ation and linkage disequilibrium in four population samples, greatly
facilitates both the design and analysis of association studies. Second,
the availability of dense genotyping chips, containing sets of hundreds of
thousands of single nucleotide polymorphisms (SNPs) that provide
good coverage of much of the human genome, means that for the first
timeGWAstudies for thousandsof cases andcontrols are technically and
financially feasible. Third, appropriately large and well-characterized
clinical samples have been assembled for many common diseases.

The Wellcome Trust Case Control Consortium (WTCCC) was
formed with a view to exploring the utility, design and analyses of
GWA studies. It brought together over 50 research groups from the
UK that are active in researching the genetics of common human
diseases, with expertise ranging from clinical, through genotyping, to

informatics and statistical analysis. Here we describe the main experi-
ment of the consortium: GWA studies of 2,000 cases and 3,000 shared
controls for 7 complex human diseases of major public health import-
ance—bipolar disorder (BD), coronary artery disease (CAD), Crohn’s
disease (CD), hypertension (HT), rheumatoid arthritis (RA), type 1
diabetes (T1D), and type 2 diabetes (T2D). Two further experiments
undertaken by the consortium will be reported elsewhere: a GWA
study for tuberculosis in 1,500 cases and 1,500 controls, sampled from
The Gambia; and an association study of 1,500 common controls with
1,000 cases for each of breast cancer, multiple sclerosis, ankylosing
spondylitis and autoimmune thyroid disease, all typed at around
15,000 mainly non-synonymous SNPs. By simultaneously studying
seven diseases with differing aetiologies, we hoped to develop insights,
not only into the specific genetic contributions to each of the diseases,
but also into differences in allelic architecture across the diseases. A
further major aim was to address important methodological issues of
relevance to all GWA studies, such as quality control, design and ana-
lysis. In addition to our main association results, we address several of
these issues below, including the choice of controls for genetic studies,
the extent of population structure within Great Britain, sample sizes
necessary to detect genetic effects of varying sizes, and improvements in
genotype-calling algorithms and analytical methods.

Samples and experimental analyses

Individuals included in the study were living within England,
Scotland and Wales (‘Great Britain’) and the vast majority had

*Lists of participants and affiliations appear at the end of the paper.
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self-identified themselves as white Europeans (153 individuals with
non-Caucasian ancestry were excluded from final analysis—see
below). The seven conditions selected for study are all common
familial diseases of major public health importance both in the UK
and globally4, and for which suitable nationally representative sample
sets were available. The control individuals came from two sources:
1,500 individuals from the 1958 British Birth Cohort (58C) and 1,500
individuals selected from blood donors recruited as part of this pro-
ject (UK Blood Services (UKBS) controls). See Methods and
Supplementary Table 1 for sample recruitment, phenotypes and
summary details for each collection.

We adopted an experimental design with 2,000 cases for each
disease and 3,000 combined controls. All 17,000 samples were geno-
typedwith the GeneChip 500KMapping Array Set (Affymetrix chip),
which comprises 500,568 SNPs, as described in Methods. The power
of this study (estimated from simulations that mimic linkage dis-
equilibrium patterns in the HapMap Caucasian sample (CEU), see
Methods) averaged across SNPs with minor allele frequencies
(MAFs) above 5% is estimated to be 43% for alleles with a relative
risk of 1.3, increasing to 80% for a relative risk of 1.5, for a P-value
threshold of 53 1027 (Supplementary Table 2).

We developed a new algorithm, CHIAMO, which we applied to
simultaneously call the genotypes from all individuals (see Methods
andSupplementary Information).Cross-platformcomparison showed
CHIAMO to outperform BRLMM (the standard Affymetrix algo-
rithm) by having an error rate under 0.2% (Supplementary Table 3),
and comparison of 108 duplicate genotypes in our study gave a dis-
cordance rate of 0.12%.

We excluded 809 samples after checks for contamination, false
identity, non-Caucasian ancestry and relatedness (see Methods and
Supplementary Table 4); 16,179 individuals remained in the study.

Genome-wide, 469,557 SNPs (93.8%) passed our quality control
filters (described inMethods) giving an average call rate of 99.63%.Of
those, 392,575 have study-wide MAFs. 1% (45,106 have MAFs,
0.1%; see also Supplementary Figs 1 and 2). Initial analyses of the
polymorphic SNPs suggest that patterns of linkage disequilibrium
in our samples are very similar to those in HapMap (Supplementary
Fig. 3). Therefore, we expect genome coverage with the Affymetrix
500K set in this study to be similar to that estimated for the HapMap
CEU panel2.

All SNPs passing quality control filters were used in the association
analyses, although power is very low for SNPs with lowMAFs (unless
they have unusually large effects). On visual inspection of the cluster
plots of SNPs showing apparently strong association, we removed a
further 638 SNPs with poor clustering.

Control groups

Our main purpose in using two control groups was to assess possible
bias in ascertaining control samples. In addition, noting that DNA
sample processing differed between these groups, comparison of con-
trol groups also provides a check for effects of differential genotyping
errors as a result of differences in DNA collection and preparation.
Figure 1a shows the results of 1-d.f. Mantel-extension tests5 for differ-
ences in allele frequencies of SNPs between subjects from the 58BC
and UKBS collections, stratified by 12 broad regions of Great Britain
(see Supplementary Table 5 and Supplementary Fig. 4 for region
definitions). The associated quantile-quantile plot (see Methods for
background) in Fig. 1b shows good agreement with the null distri-
bution (similar results are obtained for tests that do not stratify by
geography, data not shown). The fact that we see few significant dif-
ferences between these two control groups despite the fact that they
differ in population groups sampled, DNA processing, and age, indi-
cates that there would be little bias due to use of either sample as a
control group for any of the case series, and justifies our combining of
the two control groups to form a single group of 3,000 subjects for our
main analyses.

One consequence of using a shared control group (for which
detailed phenotyping for all traits of interest is not available) relates
to the potential formisclassification bias: a proportion of the controls
is likely to have the disease of interest (and therefore might meet the
criteria for inclusion as a case) and some others will develop it in
the future. However, the effect this has on power is modest unless the
extent of misclassification bias is substantial; for example, if 5% of
controls wouldmeet the definition of cases at the same age, the loss of
power is approximately the same as that due to a reduction of the
sample size by 10%6. Even for the higher prevalence conditions exam-
ined by the WTCCC (such as HT, CAD and T2D), the precise ascer-
tainment schemes used here (which enriched for more extreme
phenotypes and/or strong family history) will have limited the pro-
portions of controls meeting case criteria to low levels (for example,
to,5%). Although a study design which used ‘hypercontrols’ (that
is, selection of control individuals from the lower extremity of the
relevant trait distribution) would generally be the most powerful
approach in a study focusing on one disease, the merits of such an
approach need to be weighed against the additional costs associated
with the need to phenotype and genotype each control sample.

Geographical variation and population structure

An additional cause of false positive findings is hidden population
structure. Case and control samples may differ in the distribution of
their ancestry, either owing to control sampling effects, as discussed
above, or to confounding when different ancestries carry higher dis-
ease risk and are, as a result, over-represented in cases. Even after
exclusion of individuals with evidence of recent non-European
ancestry, the British population is heterogeneous, having been
shaped by several waves of immigration from southern and northern
Europe. Whether the differences between these incoming popula-
tions are sufficiently large to distort the findings of population-based
case-control studies is an open question.

We first examined our samples for non-European ancestry, using
multidimensional scaling after ‘seeding’ our data with those from
the three HapMap analysis panels (see Supplementary Fig. 5 and
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Figure 1 | Genome-wide scan for allele frequency differences between
controls. a, P values from the trend test for differences between SNP allele
frequencies in the two control groups, stratified by geographical region.
SNPs have been excluded on the basis of failure in a test forHardy–Weinberg
equilibrium in either control group considered separately, a low call rate, or
if minor allele frequency is less than 1%, but not on the basis of a difference
between control groups. Green dots indicate SNPswith aP value,13 1025.
b, Quantile-quantile plots of these test statistics. In this and subsequent
quantile-quantile plots, the shaded region is the 95% concentration band
(see Methods).
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Methods), and excluded 153 individuals on this basis. We next
looked for evidence of population heterogeneity by studying allele
frequency differences between the 12 broad geographical regions
(defined in Supplementary Fig. 4). The results for these 11-d.f. tests
and associated quantile-quantile plots are shown in Fig. 2. Wide-
spread small differences in allele frequencies are evident as an
increased slope of the line (Fig. 2b); in addition, a few loci showmuch
larger differences (Fig. 2a and Supplementary Fig. 6).

Thirteen genomic regions showing strong geographical variation
are listed in Table 1, and Supplementary Fig. 7 shows theway in which
their allele frequencies vary geographically. The predominant pattern
is variation along a NW/SE axis. The most likely cause for these
marked geographical differences is natural selection, most plausibly
in populations ancestral to those now in the UK. Variation due to
selection has previously been implicated at LCT (lactase) and major
histocompatibility complex (MHC)7–9, andwithin-UKdifferentiation
at 4p14 has been found independently10, but others seem to be new
findings. All but three of the regions contain known genes. Aside from

evolutionary interest, genes showing evidence of natural selection are
particularly interesting for the biology of traits such as infectious dis-
eases; possible targets for selection include NADSYN1 (NAD synthe-
tase 1) at 11q13, which could have a role in prevention of pellagra, as
well as TLR1 (toll-like receptor 1) at 4p14, for which a role in the
biology of tuberculosis and leprosy has been suggested10.

There may be important population structure that is not well
captured by current geographical region of residence. Present
implementations of strongly model-based approaches such as
STRUCTURE11,12 are impracticable for data sets of this size, and we
reverted to the classical method of principal components13,14, using a
subset of 197,175 SNPs chosen to reduce inter-locus linkage disequi-
librium. Nevertheless, four of the first six principal components
clearly picked up effects attributable to local linkage disequilibrium
rather than genome-wide structure. The remaining two components
show the same predominant geographical trend from NW to SE but,
perhaps unsurprisingly, London is set somewhat apart (Supplemen-
tary Fig. 8).

The overall effect of population structure on our association
results seems to be small, once recent migrants from outside
Europe are excluded. Estimates of over-dispersion of the association
trend test statistics (usually denoted l; ref. 15) ranged from 1.03 and
1.05 for RA and T1D, respectively, to 1.08–1.11 for the remaining
diseases. Some of this over-dispersion could be due to factors other
than structure, and this possibility is supported by the fact that inclu-
sion of the two ancestry informative principal components as cov-
ariates in the association tests reduced the over-dispersion estimates
only slightly (Supplementary Table 6), as did stratification by geo-
graphical region. This impression is confirmed on noting that
P values with and without correction for structure are similar
(Supplementary Fig. 9). We conclude that, for most of the genome,
population structure has at most a small confounding effect in our
study, and as a consequence the analyses reported below do not
correct for structure. In principle, apparent associations in the few
genomic regions identified in Table 1 as showing strong geographical
differentiation should be interpreted with caution, but none arose in
our analyses.

Disease association results

We assessed evidence for association in several ways (see Methods for
details), drawing on both classical and bayesian statistical approaches.
For polymorphic SNPs on the Affymetrix chip, we performed trend
tests (1 degree of freedom16) and general genotype tests (2 degrees of
freedom16, referred to as genotypic) between each case collection and
the pooled controls, and calculated analogous Bayes factors. There
are examples from animal models where genetic effects act differently
in males and females17, and to assess this in our data we applied a
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Figure 2 | Genome-wide picture of geographic variation. a, P values for the
11-d.f. test for difference in SNP allele frequencies between geographical
regions, within the 9 collections. SNPs have been excluded using the project
quality control filters described inMethods. Green dots indicate SNPs with a
P value,13 1025. b, Quantile-quantile plots of these test statistics. SNPs at
which the test statistic exceeds 100 are represented by triangles at the top of
the plot, and the shaded region is the 95% concentration band (see
Methods). Also shown in blue is the quantile-quantile plot resulting from
removal of all SNPs in the 13 most differentiated regions (Table 1).

Table 1 | Highly differentiated SNPs

Chromosome Genes Region (Mb) SNP Position P value

2q21 LCT 135.16–136.82 rs1042712 136,379,576 5.54 3 10
213

4p14 TLR1, TLR6, TLR10 38.51–38.74 rs7696175 386,43,552 1.51 3 10
212

4q28 137.97–138.01 rs1460133 137,999,953 4.43 3 10
208

6p25 IRF4 0.32–0.42 rs9378805 362,727 5.39 3 10
213

6p21 HLA 31.10–31.55 rs3873375 31,359,339 1.07 3 10
211

9p24 DMRT1 0.86–0.88 rs11790408 866,418 4.96 3 10
207

11p15 NAV2 19.55–19.70 rs12295525 19,661,808 7.44 3 10
208

11q13 NADSYN1, DHCR7 70.78–70.93 rs12797951 70,820,914 3.01 3 10
208

12p13 DYRK4,AKAP3,NDUFA9,
RAD51AP1,GALNT8

4.37–4.82 rs10774241 45,537,27 2.73 3 10
208

14q12 HECTD1,AP4S1,STRN3 30.41–31.03 rs17449560 30,598,823 1.46 3 10
207

19q13 GIPR,SNRPD2,QPCTL,
SIX5,DMPK,DMWD,
RSHL1,SYMPK,FOXA3

50.84–51.09 rs3760843 50,980,546 4.19 3 10
207

20q12 38.30–38.77 rs2143877 38,526,309 1.12 3 10
209

Xp22 2.06–2.08 rs6644913 2,061,160 1.23 3 10
207

Properties of SNPs that show large allele frequency differences between samples of individuals from 12 regions across Great Britain. Regions showing differentiated SNPs are givenwith details of the
SNPwith the smallest P value in each region for differentiation on the 11-d.f. test of differences in SNP allele frequencies between geographical regions, within the 9 collections. Cluster plots for these
SNPs have been examined visually. Signal plots appear in Supplementary Information. Positions are in NCBI build-35 coordinates.
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sex-differentiated test which is sensitive to associations of a different
magnitude and/or direction in the two sexes.

Our study also allows us to look for loci whichmay have an effect in
more than one disease. To assess this, we compared our common
controls with all cases in each of three natural groupings of diseases:
CAD1HT1T2D (metabolic and cardiovascular phenotypes with
potential aetiological overlap, for example, involving defects in insu-
lin action); RA1T1D (already known to share common loci); and
CD1RA1T1D (all autoimmune diseases).

To help to capture putative disease loci not on the Affymetrix chip
we used a new multilocus method in which a population genetics
model is applied to our genotype data and the HapMap reference
samples to simulate, or impute, genotype data at 2,193,483 HapMap
SNPs not on the Affymetrix chip. These imputed, or in silico, geno-
types are then tested for association in the same ways as SNPs geno-
typed in the project.

Before detailing the principal results for each disease, we first sum-
marize our main observations. Table 2 details the findings from the
WTCCC scan for the 15 variants for which there was strong prior
evidence of association with one or more of the diseases studied,
based on extensive replication studies. All but two of these show
associations in our study, with the magnitude of the evidence gen-
erally consistent with their effect sizes as estimated fromprior studies.
One of the signals for which we failed to obtain evidence of replica-
tion (APOE in CAD) is poorly tagged by the Affymetrix 500K chip.
The other (INS in T1D) is represented by a single SNP thatmarginally
failed our study-wide quality control filters (overall missingness
5.2%) but which was nonetheless strongly associated with T1D when
examined. Quantile-quantile plots for the trend test for each of the
seven diseases show only very minor deviations from the null distri-
bution, except in the extreme tails which correspond to associations
reported below (Fig. 3). The quantile-quantile plots and the results at
positive controls (Table 2) give confidence in the quality of our data
and the robustness of our analyses.

Our genome-wide results for the trend test are illustrated in Fig. 4.
The single-disease trend and genotypic tests for SNPs on the chip
identified 21 signals across the 7 diseases that exceeded a threshold of
53 1027 (Table 3). For each of these SNPs (except those within the
MHC), cluster plots are shown in Supplementary Fig. 10 and ‘signal
plots’ in Fig. 5. These signal plots estimate the likely demarcation of
the hit region and show the signal at genotyped and imputed SNPs
together with local genomic context. Four further strong (with
P, 53 1027) associations were revealed by the other primary ana-
lyses described (Table 3). One locus (in RA) was revealed by the sex-
differentiated analysis, two through multilocus approaches (both for
T1D) and one through an analysis which combined cases from more
than one autoimmune disease (signal plots in Supplementary Figs 11,
12 and 13, respectively).

All of these signals were subjected to visual inspection of cluster
plots, and in all cases (with one exception noted below) nearby corre-
lated SNPs also showed a strong signal (see signal plots). Thus, geno-
typing artefacts are unlikely to be responsible for these associations.
Indeed, at the time of writing, 12 of these 25 strong signals represent
replications of previously reported findings (only those with extensive
prior replication are reported inTable 2).Of the remainder, follow-up
studies (reported elsewhere) have confirmed all but oneof the loci (ten
in total) for which replication has been attempted10,19–24. The other
replication study gave equivocal results. Of the 18 loci implicated in
autoimmune diseases, 5 show associations (P, 0.001) tomore than 1
condition, leading to a number of further potential new associations,
at least one of which has also been replicated10.

It is likely that further susceptibility genes will be identified through
follow-up of other signals for which the evidence from our scan is less
conclusive (see below for some specific examples). For example, there
are 58 further signals with single-point P values between 1025 and
53 1027 for which inspection of cluster plots verifies CHIAMO calls
(Table 4).As describedbelow, analyseswhichmakeuseof selected case
samples to expand the reference group should also provide a useful
route to the prioritization of such putative signals for further analysis.
For convenience, the strongest association results are presented sepa-
rately for each disease in Supplementary Table 7.

Several general points are relevant to interpretation of these dis-
ease-association data. First, replication studies are required to con-
firm associations from GWAs. For the reasons given in the box, we
regard very low P values (say P, 53 1027) in our comparatively
large sample size as strong evidence for association, and indeed all

Box 1 | Significance levels in genome-wide studies

There has been much debate concerning interpretation of significance
levels in genome-wide association studies andwhether, and how, these
should be corrected for multiple testing. Classical multiple testing
theory in statistics is concernedwith the problem of ‘multiple tests’ of a
single ‘global’ null hypothesis. This, we would argue, is a problem far
removed from that which faces us in genome-wide association studies,
where we face the problem of testing ‘multiple hypotheses’ (for a
particular disease, one hypothesis for each SNP, or region of correlated
SNPs, in the genome) andwe thus do not subscribe to the view that one
should correct significance levels for the number of tests performed to
obtain ‘genome-wide significance levels’. Nonetheless, our aim is to
keep the false positive rate within acceptable bounds and this still leads
to the view that very low P values are needed for strong evidence of
association. But the factor determining the threshold is not the number
of tests performed, but the a priori probability that there is likely to be a
true association at any specified location in the genome. Of course, we
cannot know this prior probability from objective evidence, but we can
perhaps estimate an order of magnitude.

There are two linked questions. The first concerns the choice of an
appropriate ‘threshold’ for reporting possible associations as likely to
be genuine. Here the mathematics is quite straightforward if we make
the simplifying assumption that we have the same power to detect all
true associations. Then we have18

Posterior odds for true association5
Prior odds 3 Power/Significance threshold

That is, for a given significance threshold, the probability of a true
association depends on the prior odds and, crucially, the power. A
plausible estimate for the prior odds of true association at any specified
locus might be of the order of 100,000:1 against, for example, on the
basis of 1,000,000 ‘independent’ regions of the genome and an
expectation of 10 detectable genes involved in the condition. (Other
plausible estimatesmight vary from this by an order ofmagnitude or so
in either direction.) Then, assuming a power of 0.5 and a significance
threshold of 53 1027, the posterior odds in favour of a ‘hit’ being a true
association would be 10:1. However, if we relax this significance
threshold by a factor of ten, or alternatively if the power were lower by
a factor of 10, the posterior odds that a ‘hit’ is a true association would
also be reduced by a factor of ten. This simplemathematical analysis is
little affected by allowing for the fact that true associations come in
various sizes with varying power to detect them; the above formula is
simply modified by interpreting ‘power’ as the mean power.

The above discussion concerns ‘average’ properties of ‘hits’
achieving given significance levels. After the association data are
available, a related but different question is whether a particular
positive finding is likely to be a true one. For that calculation, the prior
oddsmust bemultiplied by the Bayes factor, the ratio of the probability
of the observed data under the assumption that there is a true
association to its probability under the null hypothesis. As in power
calculations, the calculation of Bayes factors requires assumptions
about effect sizes (see Methods for details).

A key point from both perspectives is that interpreting the strength
of evidence in an association study depends on the likely number of
true associations, and the power to detect them which, in turn,
depends on effect sizes and sample size. In a less-well-powered study
it would be necessary to adoptmore stringent thresholds to control the
false-positive rate. Thus, when comparing two studies for a particular
disease, with a hit with the same MAF and P value for association, the
likelihood that this is a true positive will in general be greater for the
study that is better powered, typically the larger study. In practice,
smaller studies often employ less stringent P-value thresholds, which is
precisely the opposite of what should occur.
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or most of the loci we find at this level are either already known or
have now been confirmed by subsequent replication. Such replica-
tion studies are also the substrate for efforts to determine the range of
associated phenotypes and to identify and characterize pathologically
relevant variation.

Second, failure to detect a prominent association signal in the pre-
sent study cannot provide conclusive exclusion of any given gene. This
is the consequence of several factors including: less-than-complete
coverage of common variation genome-wide on the Affymetrix chip;
poor coverage (by design) of rare variants, including many structural
variants (thereby reducing power to detect rare, penetrant, alleles)25;
difficultieswithdefining the full genomic extent of the gene of interest;
and, despite the sample size, relatively low power to detect, at levels of

significance appropriate for genome-wide analysis, variants with
modest effect sizes (odds ratio (OR), 1.2).

Third, whereas the association signals detected can help to define
regions of interest, they cannot provide unambiguous identification
of the causal genes. Nevertheless, assessments on the basis of posi-
tional candidacy carry considerable weight, and, as we show, these
already allow us, for selected diseases, to highlight pathways and
mechanisms of particular interest. Naturally, extensive resequencing
and fine-mapping work, followed by functional studies will be
required before such inferences can be translated into robust state-
ments about the molecular and physiological mechanisms involved.

We turn now to a discussion of the main findings for each disease,
focusing here only on the most significant and interesting results

Table 2 | Evidence for signal of association at previously robustly replicated loci

Collection Gene Chromosome Reported SNP WTCCC SNP HapMap r2 Trend
P value

Genotypic P value

CAD APOE 19q13 * rs4420638 - 1.7 3 10
201

1.7 3 10
201

CD NOD2 16q12 rs2066844 rs17221417 0.23 9.4 3 10
212

4.0 3 10
211

CD IL23R 1p31 rs11209026 rs11805303 0.01 6.5 3 10
213

5.9 3 10
212

RA HLA-DRB1 6p21 * rs615672 - 2.6 3 10
227

7.5 3 10
227

RA PTPN22 1p13 rs2476601 rs6679677 0.75 4.9 3 10
226

5.6 3 10
225

T1D HLA-DRB1 6p21 * rs9270986 - 4.0 3 10
2116

2.3 3 10
2122

T1D INS 11p15 rs689 { - - -
T1D CTLA4 2q33 rs3087243 rs3087243 1 2.5 3 10

205

1.8 3 10
205

T1D PTPN22 1p13 rs2476601 rs6679677 0.75 1.2 3 10
226

5.4 3 10
226

T1D IL2RA 10p15 rs706778 rs2104286 0.25 8.0 3 10
206

4.3 3 10
205

T1D IFIH1 2q24 rs1990760 rs3788964 0.26 1.9 3 10
203

7.6 3 10
203

T2D PPARG 3p25 rs1801282 rs1801282 1 1.3 3 10
203

5.4 3 10
203

T2D KCNJ11 11p15 rs5219 rs5215 0.9 1.3 3 10
203

5.6 3 10
203

T2D TCF7L2 10q25 rs7903146 rs4506565 0.92 5.7 3 10
213

5.1 3 10
212

Where information on the strength of association at a particular SNP had been previously published and replicated we tabulated the P value of both the trend and genotype test at the same SNP (if in
our study), or the best tag SNP (defined to be the SNP with highest r2 with the reported SNP, calculated in the CEU sample of the HapMap project). Positions are in NCBI build-35 coordinates.
*Previous reports relate to haplotypes rather than single SNPs. {Not well tagged by SNPs that pass the quality control, see main text.
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Figure 3 | Quantile-quantile plots for seven genome-wide scans. For each
of the seven disease collections, a quantile-quantile plot of the results of the
trend test is shown in black for all SNPs that pass the standard project filters,
have a minor allele frequency.1% and missing data rate,1%. SNPs that
were visually inspected and revealed genotype calling problems were
excluded. These filters were chosen to minimize the influence of genotype-
calling artefacts. Each quantile-quantile plot shown in black involves around

360,000 SNPs. SNPs at which the test statistic exceeds 30 are represented by
triangles. Additional quantile-quantile plots, which also exclude all SNPs
located in the regions of association listed in Table 3, are superimposed in
blue (for BD, the exclusion of these SNPs has no visible effect on the plot, and
for HT there are no such SNPs). The blue quantile-quantile plots show that
departures in the extreme tail of the distribution of test statistics are due to
regions with a strong signal for association.
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from the analyses described above, and consideration of an expanded
reference group, described below.
Bipolar disorder (BD). Bipolar disorder (BD; manic depressive ill-
ness26) refers to an episodic recurrent pathological disturbance in
mood (affect) ranging fromextreme elationormania to severedepres-
sion and usually accompanied by disturbances in thinking and beha-
viour: psychotic features (delusions and hallucinations) often occur.
Pathogenesis is poorly understood but there is robust evidence for a
substantial genetic contribution to risk27,28. The estimated sibling
recurrence risk (ls) is 7–10 andheritability 80–90%

27,28. Thedefinition
of BD phenotype is based solely on clinical features because, as yet,
psychiatry lacks validating diagnostic tests such as those available for
many physical illnesses. Indeed, a major goal of molecular genetics
approaches to psychiatric illness is an improvement in diagnostic
classification that will follow identification of the biological systems
that underpin the clinical syndromes. The phenotype definition that
we have used includes individuals that have suffered one or more
episodes of pathologically elevated mood (see Methods), a criterion
that captures the clinical spectrum of bipolar mood variation that
shows familial aggregation29.

Several genomic regions have been implicated in linkage studies30

and, recently, replicated evidence implicating specific genes has been
reported. Increasing evidence suggests an overlap in genetic suscept-
ibility with schizophrenia, a psychotic disorder with many similar-
ities to BD. In particular association findings have been reported with

both disorders at DAOA (D-amino acid oxidase activator), DISC1
(disrupted in schizophrenia 1), NRG1 (neuregulin1) and DTNBP1
(dystrobrevin binding protein 1)31.

The strongest signal in BD was with rs420259 at chromosome
16p12 (genotypic test P5 6.33 1028; Table 3) and the best-fitting
genetic model was recessive (Supplementary Table 8). Although
recognizing that this signal was not additionally supported by the
expanded reference group analysis (see below and Supplementary
Table 9) and that independent replication is essential, we note that
several genes at this locus could have pathological relevance to BD,
(Fig. 5). These include PALB2 (partner and localizer of BRCA2),
which is involved in stability of key nuclear structures including
chromatin and the nuclear matrix; NDUFAB1 (NADH dehydrogen-
ase (ubiquinone) 1, alpha/beta subcomplex, 1), which encodes a
subunit of complex I of the mitochondrial respiratory chain; and
DCTN5 (dynactin 5), which encodes a protein involved in intracel-
lular transport that is known to interact with the gene ‘disrupted in
schizophrenia 1’ (DISC1)32, the latter having been implicated in sus-
ceptibility to bipolar disorder as well as schizophrenia33.

Of the four regions showing association at P, 53 1027 in the
expanded reference group analysis (Supplementary Table 9), it is of
interest that the closest gene to the signal at rs1526805 (P5 2.23
1027) is KCNC2 which encodes the Shaw-related voltage-gated pot-
assium channel. Ion channelopathies are well-recognized as causes of
episodic central nervous system disease, including seizures, ataxias
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and paralyses34. It is possible that this may extend to episodic distur-
bances of mood and behaviour.

Amongst the other higher ranked signals in the BD data set
(Supplementary Table 7), there is support for the previously suggested
importance of GABA neurotransmission (rs7680321 (P5 6.23 1025)
in GABRB1 encoding a ligand-gated ion channel (GABA A receptor,
beta 1))35, glutamate neurotransmission (rs1485171 (P5 9.73 1025)
in GRM7 (glutamate receptor, metabotropic 7))35 and synaptic func-
tion (rs11089599 (P5 7.23 1025) in SYN3 (synapsin III)36).

We note that a broad range of genetic and non-genetic data point
to the importance of analyses that use alternative approaches to
phenotype definition, including symptom dimensions31. Although
beyond the scope of the current paper, such analyses will be required
to maximize the potential of the current BD data set.
Coronary artery disease (CAD). Coronary artery disease (coronary
atherosclerosis) is a chronic degenerative condition in which lipid
and fibrousmatrix is deposited in the walls of the coronary arteries to
form atheromatous plaques37. It may be clinically silent or present
with angina pectoris or acute myocardial infarction. Pathogenesis is
complex, with endothelial dysfunction, oxidative stress and inflam-
mation contributing to development and instability of the athero-
sclerotic plaque37.

In addition to lifestyle and environmental factors, genes are
important in the aetiology of CAD38. For early myocardial infarction,
estimates of ls range from ,2 to ,7 (ref. 39). Genetic variation is
thought likely to influence risk of CAD both directly and through
effects on known CAD risk factors including hypertension, diabetes
and hypercholesterolaemia. Genome-wide linkage studies have
mapped several loci thatmay affect susceptibility to CAD/myocardial
infarction40 although for only two of these has the likely gene been
identified (ALOX5AP (arachidonate 5-lipoxygenase-activating pro-
tein) and LTA4H (leukotriene A4 hydrolase))41,42. Association stud-
ies have identified several plausible genetic variants affecting lipids,

thrombosis, inflammation or vascular biology but for most the evid-
ence is not yet conclusive40. We did not find evidence for strong
association at any of these genes within our study (Table 2 and
Supplementary Table 10).

The most notable new finding for CAD is the powerful association
on chromosome 9p21.3 (Table 3; Fig. 5). Although the strongest
signal is seen at rs1333049 (P5 1.83 10214), associations are seen
for SNPs across. 100 kilobases. This region has not been highlighted
in previous studies of CAD or myocardial infarction40,43. The region
of interest contains the coding sequences of genes for two cyclin
dependent kinase inhibitors, CDKN2A (encoding p16INK4a) and
CDKN2B (p15INK4b), although the most closely associated SNP is
some distance removed. Both genes have multiple isoforms, have
an important role in the regulation of the cell cycle and are widely
expressed44, with CDKN2B known to be expressed in the macro-
phages but not the smooth muscle cells of fibrofatty lesions45,46. It
is of interest that expression of CDKN2B is induced by transforming
growth factor beta (TGF-b) and that the TGF-b signalling system is
implicated in the pathogenesis of human atherosclerosis45,46. Besides
CDKN2A and CDKN2B, the only other known gene nearby isMTAP
which encodes methylthioadenosine phosphorylase, an enzyme that
contributes to polyamine metabolism and is important for the
salvage of both adenine and methionine. MTAP is ubiquitously
expressed, including in the cardiovascular system47. Further work is
required to determine whether the CAD association at this locus is
mediated through CDKN2A/B, MTAP or some other mechanism.
The same region also shows replicated evidence of association to
T2D in the WTCCC and other data sets19,21,22, though different
SNPs seem to be involved.

None of the loci showing more modest associations with CAD
(Table 4) includes genes hitherto strongly implicated in the patho-
genesis of CAD. A potentially interesting association is at rs6922269
(P5 6.33 1026), an intronic SNP in MTHFD1L, which encodes

Table 3 | Regions of the genome showing the strongest association signals
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T2D 16q12 52.36–52.41 rs9939609 5.24 3 10
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1.91 3 10
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Multi-locus analysis

T1D 4q27 123.26–123.92 rs6534347 4.48 3 10
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1.83 3 10
206

5.15 4.69 A A 1.30 (1.10–1.55) 1.49 (1.25–1.78) 0.351 0.402
T1D 12p13 9.71–9.86 rs3764021 7.19 3 10
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RA 7q32 130.80–130.84 rs11761231 3.91 3 10
207

1.37 3 10
206 - - G A 1.44 (1.19–1.75) 1.64 (1.35–1.99) 0.375 0.327

Combined cases
RA1T1D 10p15 6.07–6.17 rs2104286 5.92 3 10

208

2.52 3 10
207

5.26 4.45 T C 1.35 (1.11–1.65) 1.62 (1.34–1.97) 0.286 0.245

Regions with at least one SNPwith a P value of less than 5 x 1027 for our primary analyses. The log10 value of the Bayes factor (BF) for the bayesian analysis corresponding to the trend and genotypic
tests is also given. Regionmarks the boundaries of signal defined by recombination and return of test statistics to background levels. Theminor allele is defined in the controls and its frequency in that
group aswell as the case sample is reported.MAF,minor allele frequency. Cluster plots for each SNPhave been inspected visually, and are shown in Supplementary Fig. 10. Positions are inNCBI build-
35 coordinates *Multiple SNPs in the MHC region are significant, we report the most extreme.
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methylenetetrahydrofolate dehydrogenase (NADP1-dependent)
1-like, the mitochondrial isozyme of C1-tetrahydrofolate (THF)
synthase48,49. C1-THF synthases interconvert the one carbon units car-
ried by the biologically active form of folic acid, C1-tetrahydrofolate.
These are used in a variety of cellular processes including purine and
methionine synthesis48. Another enzyme in the samepathway,methyl-
ene THF reductase (encoded by MTHFR) is subject to a common
mutation which influences plasma homocysteine level50 and has been
associated with increased risk of coronary and other atherosclerotic
disease51. The possibility of a link between variants inMTHFD1L and
CAD risk is supported by evidence thatMTHFD1L activity also con-
tributes to plasma homocysteine52 and that defects in theMTHFD1L
pathway may increase plasma homocysteine level48,53.

An intronic SNP in ADAMTS17 (a disintegrin and metalloprotei-
nase with thrombospondin motifs 17), which showed modest asso-
ciation (rs1994016; P5 1.13 1024) in our primary analysis, showed
amuch stronger association in the expanded reference group analysis
(see below and Supplementary Table 9). Although the specific func-
tion of ADAMTS17 has not been determined, other members of
the ADAMTS family have been implicated in vascular extracellular
matrix degradation, vascular remodelling and atherosclerosis54,55.
Crohn’s disease (CD). Crohn’s disease is a common form of chronic
inflammatory bowel disease56. The pathogenicmechanisms are poorly
understood, but probably involve a dysregulated immune response
to commensal intestinal bacteria and possibly defects in mucosal
barrier function or bacterial clearance57. Genetic predisposition to
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CD is suggested by a ls of 17–35 and by twin studies that contrast
monozygotic concordance rates of 50% with only 10% in dizygotic
pairs58,59.

A number of CD-susceptibility loci have previously been defined,
and all of these generate strong signals in our data (Table 2). In 2001,
positional cloning identified CARD15 (caspase recruitment domain
family, member 15; NOD2) as the first confirmed CD-susceptibility
gene60,61. In the present study, this locus is represented by rs17221417
(P5 9.43 10212). A second association, on chromosome 5q31 (ref.
62) has been widely replicated, although the identity of the causative
gene is disputed owing to extensive regional linkage disequilibrium63.
Here, the previously described risk haplotype is tagged by rs6596075
(P5 5.43 1027).

More recent studies have identified four further CD-susceptibility
loci, all of which are strongly replicated in the present study.
The association between CD and SNPs within IL23R (interleukin
23 receptor)63 is here represented by a cluster of associated SNPs,
including rs11805303 (P5 6.53 10213). The strongest signal for
CD in the present scan (at rs10210302; P5 7.13 10214) maps to
the ATG16L1 (ATG16 autophagy related 16-like 1) gene and is in
strong linkage disequilibrium (r25 0.97) with a non-synonymous
SNP (T300A, rs2241880) associated with CD in a German non-
synonymous SNP scan64. The third is a locus at chromosome
10q21 around rs10761659 (P5 2.73 1027) and represents a non-
coding intergenic SNP mapping 14-kb telomeric to gene ZNF365
and 55-kb centromeric to the pseudogene antiquitin-like 4—a
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recently detected signal65. Finally, strong association with a cluster of
SNPs around rs17234657 (P5 2.13 10213) within a 1.2Mb gene
desert on chromosome 5p13.1, recapitulates the finding of a recent
GWA study66.

The current study identifies four further new strong association
signals in CD, located on chromosomes 3p21, 5q33, 10q24 and 18p11
(Table 3; Fig. 5). Successful replication for all four loci is reported
elsewhere23.

The first of these includes several SNPs around IRGM (immunity-
related guanosine triphosphatase; the human homologue of the
mouse Irgm/Lrg47), the strongest signal being at rs1000113 (P5

5.13 1028). IRGM encodes a GTP-binding protein which induces
autophagy and is involved in elimination of intracellular bacteria,
including Mycobacterium tuberculosis67. Reduced function and/or
activity of this gene would be expected to lead to persistence of
intracellular bacteria, consistent with existing models of CD patho-
genesis57 and the recent ATG16L1 association64 (see above).

The second novel CD association is seen at rs9858542 (P5
7.73 1027), a synonymous coding SNP within the BSN (bassoon)
gene on chromosome 3p21. BSN is thought to encode a scaffold
protein expressed in brain and involved in neurotransmitter
release; a more plausible regional candidate is MST1 (macrophage

Table 4 | Regions of the genome showing moderate evidence of association
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BD 2p25 11.94–12.00 rs4027132 1.313 10
205

9.683 10
206

3.07 2.84 A G 1.39 (1.19–1.64) 1.51 (1.27–1.79) 0.459 0.414
BD 2q12 104.41–104.58 rs7570682 3.11 3 10

206

1.643 10
205

3.68 3.23 A A 1.23 (1.09–1.40) 1.64 (1.28–2.12) 0.214 0.255
BD 2q14 115.63–116.11 rs1375144 2.43 3 10

206

1.313 10
205

3.80 2.92 A G 1.32 (1.07–1.63) 1.59 (1.29–1.96) 0.337 0.291
BD 2q37 241.23–241.28 rs2953145 1.11 3 10

205

6.573 10
206

3.22 3.50 C G 1.84 (1.31–2.58) 2.14 (1.53–2.98) 0.226 0.189
BD 3p23 32.26–32.33 rs4276227 4.57 3 10

206

2.623 10
205

3.52 3.04 C T 1.20 (0.99–1.46) 1.49 (1.23–1.81) 0.371 0.326
BD 3q27 184.29–184.40 rs683395 2.30 3 10

206

5.113 10
206

3.87 3.73 G G 1.47 (1.26–1.71) 1.30 (0.69–2.46) 0.080 0.109
BD 6p21 42.82–42.86 rs6458307 3.43 3 10

201

4.353 10
206 20.80 2.84 T T 0.84 (0.75–0.96) 1.39 (1.13–1.69) 0.312 0.321

BD 8p12 34.22–34.61 rs2609653 6.86 3 10
206 - 3.44 3.21 C C 1.43 (1.19–1.71) 3.62 (1.26–10.44) 0.052 0.074

BD 9q32 114.31–114.39 rs10982256 8.80 3 10
206

4.413 10
205

3.23 2.37 T C 1.26 (1.08–1.47) 1.47 (1.24–1.74) 0.471 0.425
BD 14q22 57.17–57.24 rs10134944 3.21 3 10

206

6.893 10
206

3.73 3.59 T T 1.45 (1.24–1.68) 1.32 (0.74–2.33) 0.086 0.115
BD 14q32 103.43–103.62 rs11622475 2.10 3 10

206

8.143 10
206

3.87 3.24 C T 1.13 (0.89–1.44) 1.47 (1.17–1.86) 0.300 0.256
BD 16q12 51.36–51.50 rs1344484 1.64 3 10

206

1.033 10
205

3.94 3.41 T C 1.24 (1.03–1.48) 1.52 (1.27–1.82) 0.402 0.353
BD 20p13 3.70–3.73 rs3761218 4.43 3 10

205

6.713 10
206

2.58 3.18 T C 0.97 (0.81–1.15) 1.31 (1.09–1.57) 0.397 0.356
CAD 1q43 236.77–236.85 rs17672135 1.04 3 10

204

2.353 10
206

2.36 3.88 T C 0.70 (0.61–0.81) 1.32 (0.79–2.22) 0.134 0.108
CAD 5q21 99.98–100.11 rs383830 5.72 3 10

206

1.343 10
205

3.49 3.26 T A 1.60 (1.16–2.21) 1.92 (1.40–2.63) 0.220 0.182
CAD 6q25 151.34–151.42 rs6922269 6.33 3 10

206

1.503 10
205

3.38 3.14 A A 1.17 (1.04–1.32) 1.65 (1.32–2.06) 0.253 0.294
CAD 16q23 81.72–81.79 rs8055236 9.73 3 10

206

5.603 10
206

3.28 3.59 G T 1.91 (1.33–2.74) 2.23 (1.56–3.17) 0.198 0.162
CAD 19q12 34.74–34.78 rs7250581 9.12 3 10

206

2.503 10
205

3.30 2.87 G A 1.06 (0.79–1.43) 1.40 (1.05–1.86) 0.220 0.182
CAD 22q12 25.01–25.06 rs688034 6.90 3 10

206

3.753 10
206

3.33 3.15 T T 1.11 (0.98–1.25) 1.62 (1.34–1.95) 0.310 0.355
CD 1q24 169.53–169.67 rs12037606 1.79 3 10

206

1.093 10
205

3.89 3.35 A A 1.22 (1.07–1.40) 1.52 (1.28–1.82) 0.388 0.438
CD 5q23 131.40–131.90 rs6596075 5.40 3 10

207

3.193 10
206

4.54 4.01 C G 1.55 (1.00–2.39) 2.06 (1.35–3.14) 0.166 0.127
CD 6p22 20.83–20.85 rs6908425 5.13 3 10

206

1.103 10
205

3.55 3.38 C T 1.63 (1.18–2.25) 1.95 (1.43–2.67) 0.230 0.190
CD 6p21 32.79–32.91 rs9469220 8.65 3 10

207

2.283 10
206

4.19 3.92 A A 1.14 (0.98–1.32) 1.52 (1.28–1.79) 0.481 0.534
CD 6q23 138.06–138.17 rs7753394 4.42 3 10

206

2.593 10
205

3.52 2.99 C C 1.21 (1.04–1.40) 1.48 (1.25–1.76) 0.482 0.531
CD 7q36 147.62–147.70 rs7807268 6.89 3 10

206

4.423 10
206

3.33 3.58 G G 1.38 (1.20–1.60) 1.47 (1.24–1.74) 0.462 0.509
CD 10p15 38.52–38.57 rs6601764 2.56 3 10

206

8.953 10
206

3.74 3.01 C C 1.16 (1.01–1.33) 1.52 (1.28–1.80) 0.408 0.458
CD 19q13 50.89–51.07 rs8111071 6.14 3 10

206

1.753 10
205

3.48 3.29 G G 1.47 (1.25–1.73) 1.28 (0.56–2.88) 0.070 0.096
HT 1q43 235.67–235.79 rs2820037 5.76 3 10

205

7.663 10
207

2.54 3.99 T T 1.54 (1.03–2.31) 1.09 (0.74–1.62) 0.141 0.171
HT 8q24 140.17–140.35 rs6997709 7.88 3 10

206

4.363 10
205

3.32 2.60 G T 1.20 (0.94–1.52) 1.49 (1.18–1.89) 0.285 0.244
HT 12p12 24.86–24.95 rs7961152 7.39 3 10

206

3.033 10
205

3.29 2.51 A A 1.16 (1.01–1.32) 1.47 (1.25–1.74) 0.415 0.461
HT 12q23 100.52–100.58 rs11110912 9.18 3 10

206

1.943 10
205

3.27 3.11 G G 1.33 (1.18–1.51) 1.34 (0.96–1.86) 0.165 0.200
HT 13q21 66.90–67.04 rs1937506 9.23 3 10

206

4.533 10
205

3.25 2.85 G A 1.33 (1.04–1.69) 1.60 (1.26–2.02) 0.289 0.248
HT 15q26 94.60–94.67 rs2398162 7.85 3 10

206

5.673 10
206

3.33 3.40 A G 0.97 (0.76–1.25) 1.31 (1.03–1.67) 0.258 0.218
RA 1p36 2.44–2.77 rs6684865 5.37 3 10

206

3.143 10
205

3.47 2.97 G A 1.27 (1.02–1.56) 1.54 (1.25–1.90) 0.338 0.294
RA 1p31 80.16–80.36 rs11162922 1.80 3 10

206 - 4.11 3.80 A G 1.27 (0.41–4.01) 2.00 (0.64–6.20) 0.072 0.048
RA 4p15 24.99–25.13 rs3816587 7.65 3 10
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9.253 10
206

0.50 2.64 C C 0.91 (0.80–1.04) 1.35 (1.14–1.59) 0.406 0.434
RA 6q23 138.00–138.06 rs6920220 4.99 3 10

206

1.583 10
205

3.49 3.17 A A 1.20 (1.06–1.36) 1.72 (1.33–2.22) 0.223 0.263
RA 7q32 130.80–130.84 rs11761231 1.74 3 10

206

2.653 10
206

3.92 3.42 C T 1.44 (1.19–1.75) 1.64 (1.35–1.99) 0.375 0.327
RA 10p15 6.07–6.16 rs2104286 7.02 3 10

206

2.523 10
205

3.37 2.57 T C 1.41 (1.10–1.81) 1.68 (1.31–2.14) 0.286 0.244
RA 13q12 19.845–19.855 rs9550642 8.44 3 10

206

3.903 10
205

3.35 3.02 A A 1.34 (1.15–1.56) 2.23 (1.21–4.13) 0.084 0.112
RA 21q22 41.430–41.465 rs2837960 3.45 3 10

202

1.683 10
206

0.05 2.70 G G 0.95 (0.83–1.08) 2.30 (1.64–3.23) 0.171 0.188
RA 22q13 35.870–35.885 rs743777 7.92 3 10

206

1.153 10
206

3.29 3.52 G G 1.09 (0.97–1.24) 1.72 (1.40–2.11) 0.292 0.336
T1D 1q42 221.92–222.17 rs2639703 8.46 3 10

206

1.743 10
205

3.25 3.06 C C 1.15 (1.02–1.30) 1.61 (1.31–1.99) 0.276 0.318
T1D 4q27 123.02–123.92 rs17388568 5.01 3 10

207

3.273 10
206

4.42 3.89 A A 1.26 (1.11–1.42) 1.58 (1.27–1.95) 0.260 0.307
T1D 5q14 86.20–86.50 rs2544677 8.23 3 10

206

4.433 10
205

3.32 2.70 C G 1.34 (1.00–1.79) 1.65 (1.24–2.18) 0.242 0.204
T1D 5q31 132.64–132.67 rs17166496 6.06 3 10

201

5.203 10
206 20.97 3.25 C G 0.77 (0.68–0.87) 1.09 (0.92–1.29) 0.391 0.386

T1D 10p15 6.07–6.18 rs2104286 7.96 3 10
206

4.323 10
205

3.31 2.88 T C 1.30 (1.02–1.65) 1.57 (1.25–1.99) 0.286 0.245
T1D 12p13 9.71–9.80 rs11052552 1.02 3 10

204

7.243 10
207

2.22 3.80 G T 1.49 (1.28–1.73) 1.43 (1.21–1.69) 0.486 0.446
T1D 18p11 12.76–12.91 rs2542151 1.89 3 10

206

1.163 10
205

3.91 3.52 G G 1.30 (1.15–1.47) 1.62 (1.17–2.24) 0.163 0.201
T2D 1p31 66.04–66.36 rs4655595 2.68 3 10

206

1.333 10
205

3.81 3.47 G G 1.37 (1.17–1.59) 2.33 (1.23–4.42) 0.080 0.108
T2D 2q24 160.90–161.17 rs6718526 2.40 3 10

206

1.163 10
205

3.86 3.35 C T 1.49 (1.05–2.11) 1.86 (1.32–2.63) 0.209 0.171
T2D 3p14 55.24–55.32 rs358806 4.77 3 10

201

3.053 10
206 20.83 2.72 A A 0.86 (0.75–0.97) 1.78 (1.34–2.36) 0.198 0.204

T2D 4q27 122.92–123.02 rs7659604 2.1 3 10
202

9.423 10
206

0.13 2.74 T T 1.35 (1.19–1.54) 1.09 (0.91–1.30) 0.380 0.403
T2D 10q11 43.43–43.63 rs9326506 7.78 3 10

206

2.993 10
205

3.27 2.92 C C 1.28 (1.11–1.48) 1.46 (1.24–1.72) 0.492 0.538
T2D 12q13 49.50–49.87 rs12304921 5.37 3 10

202

7.073 10
206 20.09 2.68 G G 2.50 (1.53–4.09) 1.94 (1.20–3.15) 0.145 0.159

T2D 12q15 69.58–69.96 rs1495377 1.31 3 10
206

6.523 10
206

4.01 3.15 G G 1.28 (1.11–1.49) 1.51 (1.28–1.78) 0.497 0.547
T2D 15q24 72.24–72.50 rs2930291 7.72 3 10

206

4.403 10
205

3.30 2.42 G A 1.25 (1.04–1.51) 1.50 (1.24–1.82) 0.377 0.332
T2D 15q25 78.12–78.36 rs2903265 9.57 3 10

206

4.983 10
205

3.24 2.53 G A 1.18 (0.93–1.49) 1.47 (1.17–1.86) 0.284 0.243

Regions with at least one SNP with a P value of greater than 5 x 1027 and less than 1 x 1025 for either the trend or the genotypic test. Columns as for Table 3. Cluster plots for each SNP have been
inspected visually. Positions are inNCBI build-35 coordinates. Genotypic P valueswere not calculated for SNPswith the lowestMAFs owing to lownumbers of rare-allele homozygotes and sensitivity
to genotype calling errors.

ARTICLES NATURE |Vol 447 |7 June 2007

670
Nature   ©2007 Publishing Group



stimulating 1), which encodes a protein influencing motile activity
and phagocytosis by resident peritoneal macrophages68.

The third novel association involves a cluster of SNPs around
rs10883365 (P5 1.43 1028) on chromosome 10q24.2. The most
credible candidate here is the NKX2-3 (NK2 transcription factor
related, locus 3) gene, a member of the NKX family of homeodo-
main-containing transcription factors. Targeted disruption of the
murine homologue of NKX2-3 results in defective development of
the intestine and secondary lymphoid organs69. Abnormal expression
of NKX2-3 may alter gut migration of antigen-responsive lympho-
cytes and influence the intestinal inflammatory response.

The final novel association, at rs2542151 (P5 4.63 1028) maps
5.5-kb upstream of PTPN2 (protein tyrosine phosphatase, non-
receptor type 2) on chromosome 18p11. PTPN2 encodes the T cell
protein tyrosine phosphatase TCPTP, a key negative regulator of
inflammatory responses. The same locus also shows strong asso-
ciation with T1D susceptibility (trend test P5 1.93 1026) and a
consistent, though weaker, association with RA (P5 1.93 1022),
supporting the existence of overlapping pathways in the pathogenesis
of very distinct inflammatory phenotypes (combined trend test
P value for all three diseases5 93 1028) (Table 3; ref. 10).

Several further loci generating less strong evidence for association
are of interest on the basis of their biological candidacy (Table 4). For
example, rs9469220 (P5 8.73 1027) mapping to the human leuko-
cyte antigen (HLA) system class II region was detected in the ‘second
tier’ of associations (Table 4). This suggests a significant contribution
of HLA to CD-susceptibility, though less marked than seen in classical
autoimmune conditions such as RA and T1D. Another interesting
candidate flagged in Table 4 is TNFAIP3 (TNFa induced protein 3),
the closest gene to rs7753394on chromosome6q23. The protein prod-
uct inhibits TNFa-induced NFkB-dependent gene expression by
interfering with RIP- or TRAF-2-mediated transactivation signals—
hence interacting with the same pathway as CARD15 (NOD2).
Markers with lower levels of significance include rs6478108 (P5
9.03 1025) within TNFSF15 (tumour necrosis factor super family,
member 15), previously reported associated with CD70; and
rs3816769 (P5 3.13 1025) which maps within STAT3 (signal trans-
ducers and activator of transcription, member 3). On the X chro-
mosome rs2807261 (P5 1.33 1027) maps 50-kb from the gene
CD40LG (CD40 ligand—previously known as TNF superfamily,
member 5), implicated in the regulation of B-cell proliferation, adhe-
sion and immunoglobulin class switching71. Asdescribed in the section
on T1D, a modest association between CD and SNPs in the vicinity of
the PTPN11 gene on chromosome 12q24 (P5 1.53 1023) probably
reflects a locus influencing general autoimmune predisposition.

An emerging theme from molecular genetic studies of CD is the
importance of defects in autophagy and the processing of phagocy-
tosed bacteria. A number of other specific components within innate
and adaptive immune pathways are also highlighted.
Hypertension (HT). Hypertension refers to a clinically significant
increase in blood pressure and constitutes an important risk factor
for cardiovascular disease (http://www.who.int/whr/2002/en/; ref.
72). Lifestyle exposures that elevate blood pressure, including sodium
intake, alcohol and excess weight73 are well-described risk factors.
Genetic factors are also important74,75. Estimates of ls are approxi-
mately 2.5–3.5.

Experimental models have highlighted a number of quantitative
trait loci but these have yet to translate into insights into human
hypertension76. Linkage studies are consistent with susceptibility
genes of modest effect size77 and well-replicated findings have yet
to emerge from association approaches.

None of the variants previously associated with HT showed evid-
ence for association in our study although we note that some, such as
promoter of the WNK1 (WNK lysine deficient protein kinase 1)
gene78,79, are not well tagged by the Affymetrix chip.

For HT there were no SNPs with significance below 53 1027

(Table 3) but the number and distribution of association signals in

the range 1024 to 1027 was similar to that of the other diseases studied
(Table 4 and Supplementary Table 7). There are several possible expla-
nations. First, HT may have fewer common risk alleles of larger effect
sizes than some of the other complex phenotypes. If so, then identifi-
cation of susceptibility variants for HT is likely to be reliant on the
synthesis of findings frommultiple large-scale studies. Second, thepre-
sent study may have failed to detect genuine common susceptibility
variants of large effect size because they happened to be poorly tagged
by the set of SNPs genotyped in the current study. If so, further rounds
of genotyping using resources that offer increased density (or comple-
mentary SNP sets), and/or improved analyticalmethods (for example,
imputation-based) should facilitate their discovery. Third, study of
HT may be more susceptible than other phenotypes to the diluting
effects of misclassification bias due to the presence of hypertensive
individuals within the control samples. If so, power can be improved
in future studies by use of controls specifically screened to exclude
individuals with elevated blood pressure.

The most strongly associated SNPs (Table 4) do not identify genes
from physiological systems previously implicated by clinical or gen-
etic studies in hypertension. The strongest signal overall is with
rs2820037 on 1q43 (genotypic test, P5 7.73 1027). The closest
genes are RYR2 (encoding the ryanodine receptor 2), mutations in
which are associated with stress-induced polymorphic ventricular
tachycardia and arrhythmogenic right ventricular dysplasia80,81;
CHRM3, encoding the cholinergic receptor muscarinic 3, a member
of the G protein-coupled receptor family32; and ZP4, the product of
which is zona pellucida glycoprotein 481. The strong association sig-
nals on the X chromosome using an expanded reference group (see
below and Supplementary Table 9) are of substantial interest but they
do not identify known genes of obvious relevance to HT.
Rheumatoid arthritis (RA). Rheumatoid arthritis is a chronic
inflammatory disease characterized by destruction of the synovial
joints resulting in severe disability, particularly in patients who
remain refractory to available therapies82. Susceptibility to, and
severity of, RA are determined by both genetic and environmental
factors, with ls estimates ranging from 5–10 (ref. 83).

An association between RA and alleles of theHLA-DRB1 locus has
long been established84. Despite extensive linkage85–87 and association
studies, only one other RA susceptibility locus has been convincingly
identified in Caucasians. In common with several autoimmune dis-
eases including T1D, carriage of the T allele of the rs2476601 SNP in
the PTPN22 (protein tyrosine phosphatase, non-receptor type 22)
gene has been reproducibly associated with RA, conferring a genetic
relative risk of approximately 1.8 (refs 88, 89). These known associa-
tions withHLA-DRB1 and PTPN22 explain around 50%of the famil-
ial aggregation of RA.

Both these previous associations emerge strongly here (Table 2).
The most associated marker within PTPN22 (rs6679677: chromo-
some 1p13) is perfectly correlated (HapMap CEU data r25 1) with
the functionally relevant SNP (rs2476601) described previously, and
the effect size is consistent with previous estimates89. Amongst other
putative RA susceptibility genes, two SNPsmapping toCTLA-4 (cyto-
toxic T-lymphocyte associated 4) rs3087243 and rs11571300 were
only nominally significant (P5 0.085 and P5 0.034, respectively)
(Supplementary Table 10).

RA was the sole disease for which the sex-differentiated analysis
generated a strong signal due to different genetic effects in males and
females. The SNP rs11761231 (chromosome 7) generates a P value of
3.93 1027 for the 2-degrees of freedom (d.f.) sex-differentiated test
which combines trend tests in males and females (Table 3). (The
trend test ignoring the sex of the individuals has a P value of
1.73 1026.) This genotype has no effect on disease status in males,
but a strong apparently additive effect in females (P value in a logistic
regression model with additive log-odds is 0.68 in males and
6.83 1028 in females, additive OR for females 1.32), and may rep-
resent one of the first sex-differentiated effects in human diseases.
Cluster plots for this SNP seem good, but it is surrounded by
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recombination hotspots and has no other SNPs on the Affymetrix
chip with r2. 0.1 (Supplementary Fig. 11). Some caution is therefore
required, but this represents a potentially interesting finding which
warrants further investigation, particularly given the sex-related pre-
valence difference characteristic of this condition.

None of the 9 SNPs with nominal P values in the range 1025 to
53 1027 (Table 4) map to loci previously associated with RA. Of
particular interest is the association of SNPs mapping close to both
the alpha and beta chains of the IL2 receptor (rs2104286 in the case of
IL2RA; rs743777 and IL2RB). The IL2 receptor mediates IL2 stimu-
lation of T lymphocytes and is thereby thought to have an important
role in preventing autoimmunity. A rare 4-base-pair deletion of
IL2RA has been associated with development of severe autoimmune
disease90, and there is evidence (from previous data91, and from this
study and its follow-up) that SNPs within the IL2RA gene region are
associated with T1D (see also T1D section).

Several of the SNPs with nominal significance in the range 1024 to
1025 (Supplementary Table 7) map to genes with plausible biological
relevance. Examples include SNPs within genes implicated in the
TNF pathway (for example, rs2771369 inTNFAIP2 (tumour necrosis
factor, alpha-induced protein 2)) or in the regulation of T-cell func-
tion (rs854350 in GZMB (granzyme B) and rs4750316 in PRKCQ
(protein kinase C, theta)). The association with rs10786617 in
KAZALD1 (Kazal-type serine protease inhibitor domain-containing
protein 1 precursor), a gene whose product is known to have a role in
bone regeneration after injury, may be relevant to the development of
bone erosions in RA.

RA and T1Dwere already known to have two disease susceptibility
genes in common: at the MHC, and at PTPN22. As detailed else-
where, our study provides data indicating that this list can be
extended to include variants around IL2RA (chromosome 10p15),
PTPN2 (chromosome 18p11) and the chromosome 12q24 region
(Supplementary Table 11), all apparently novel in RA.
Type 1 diabetes (T1D). Type 1 diabetes is a chronic autoimmune
disorder with onset usually in childhood92. The ls for T1D is,15 and
twin data suggest that over 85% of the phenotypic variance is due to
genetic factors93. There are six genes/regions for which there is strong
pre-existing statistical support for a role in T1D-susceptibility: these
are the major histocompatibility complex (MHC), the genes encod-
ing insulin, CTLA-4 (cytotoxic T-lymphocyte associated 4) and
PTPN22 (protein tyrosine phosphatase, non-receptor type 22), and
the regions around the interleukin 2 receptor alpha (IL2RA/CD25)
and interferon-induced helicase 1 genes (IFIH1/MDA5)94. However,
these signals can explain only part of the familial aggregation of T1D.
Five of these previously identified associations were detected in this
scan (P# 0.001) (Table 2 and Supplementary Table 10), the excep-
tion being the INS gene discussed above.

In this study, single-point analyses revealed three novel regions (on
chromosomes 12q13, 12q24 and 16p13) showing strong evidence of
association (P, 53 1027; Table 3). Four further regions attained
similar levels of significance either through multilocus analyses
(chromosomes 4q27 and 12p13: Table 3, Supplementary Fig. 12),
or through the combined analysis of autoimmune cases (chromo-
somes 18p11 and the 10p15 CD25 region: Table 3, Supplementary
Fig. 13). The associations with T1D for chromosomes 12q13, 12q24,
16p13 and 18p11 have been confirmed in independent and multiple
populations10.

The two signals on chromosome 12 (at 12q13 and 12q24) map to
regions of extensive linkage disequilibrium covering more than ten
genes (Fig. 5). Several of these represent functional candidates
because of their presumed roles in immune signalling, considered
to be a major feature of T1D-susceptibility. These include ERBB3
(receptor tyrosine-protein kinase erbB-3 precursor) at 12q13 and
SH2B3/LNK (SH2B adaptor protein 3), TRAFD1 (TRAF-type zinc
finger domain containing 1) and PTPN11 (protein tyrosine phos-
phatase, non-receptor type 11) at 12q24. For these signal regions in
particular, extensive resequencing, further genotyping and targeted

functional studies will be essential steps in identifying which gene, or
genes, are causal95. Of those listed, PTPN11 is a particularly attractive
candidate given a major role in insulin and immune signalling96. It is
also a member of the same family of regulatory phosphatases as
PTPN22, already established as an important susceptibility gene for
T1D and other autoimmune diseases94,97. Indeed, the 12q24 variant
most associated with T1D also features in both the CD and RA scans,
generating a combined signal for all autoimmune cases of 9.33
10210 (Supplementary Table 11).

In contrast, available annotations suggest that the 16p13 region
contains only two genes of unknown function, KIAA0350 and dexa-
methasone-induced transcript (Fig. 5). Also, the region of association
identified on 18p11 (Supplementary Fig. 14), which seems to confer
susceptibility to all three autoimmune conditions studied (combined
trend test P5 93 1028, P5 4.63 1028 for CD, 1.93 1022 for RA,
and 1.93 1026 for T1D: Supplementary Table 11), maps to a single
gene, PTPN2 (protein tyrosine phosphatase, non-receptor type 2), a
member of the same family as PTPN22 and PTPN11 and involved in
immune regulation96.

Our scan found associations with SNPs within the chromosome
10p15 region containing CD25, encoding the high-affinity receptor
for IL-2. This is consistent with a previous report of associations of
this region with T1D91. The CD25 region has previously been shown
to be associated with Graves’ disease98 and the present study also
provides evidence of association with RA (combined trend test
P5 53 1028, P5,73 1026 for RA and T1D separately,
Supplementary Table 11). This finding has clear biological connec-
tions to the evidence of association between T1D and a region of 4q27
revealed by the multilocus analysis (Supplementary Table 12,
Supplementary Fig. 12). This region contains the genes encoding
both IL-2 and IL-21. Together with studies in the NOD (nonobese
diabetic) mouse model of T1D, which have shown that a major non-
MHC locus (Idd3) reflects regulatory variation of the Il2 gene99, our
results point to the primary importance of the IL-2 pathway in T1D
and other autoimmune diseases.

One further region deserves comment. In the multilocus analysis,
there was increased support for a region on chromosome 12p13
containing several candidate genes, including CD69 (CD69 antigen
(p60, early T-cell activation antigen)) and multiple CLEC (C-type
lectin domain family) genes. In contrast to the chromosome 4 region
where the effect of imputation is to tip an already-strong signal
(5.013 1027 for typed rs17388568, trend test) over the arbitrary
threshold of 53 1027, the 12p13 locus involves a more marked
change between imputed and actual (7.23 1027 for rs11052552,
general test). Replication studies of this imputed SNP to date have
produced equivocal results (for details see ref. 10).
Type 2 diabetes (T2D). Type 2 diabetes is a chronic metabolic dis-
order typically first diagnosed in the middle to late adult years100.
Strongly associated with obesity, the condition features defects in
both the secretion and peripheral actions of insulin101. The appre-
ciable familial aggregation of T2D (an estimated ls of ,3.0 in
European individuals)73 reflects both shared family environment
and genetic predisposition. Heritability values vary widely with most
estimates between 30 and 70%101.

To date, robust, widely replicated associations in non-isolate
populations are limited to variants in three genes: PPARG (encoding
the peroxisomal proliferative activated receptor gamma; P12A102),
KCNJ11 (the inwardly-rectifying Kir6.2 component of the pancreatic
beta-cell KATP channel; E23K103) and TCF7L2 (transcription factor
7-like 2; rs7903146 (refs 104, 105)).

All three of these signals are detected here with effect-sizes con-
sistent with previous reports (Table 2). A cluster of SNPs on chro-
mosome 10q, within TCF7L2, represented by rs4506565 (trend test,
OR 1.36, P5 5.73 10213) generates the strongest association signal
for T2D (Table 3, Fig. 5). Rs4506565 is in tight linkage disequilibrium
(r2 of 0.92 in the CEU component of HapMap) with rs7903146, the
variant with the strongest aetiological claims104,106. In fact, our
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imputation analysis confirms that rs7903146, though unrepresented
on the chip, is responsible for the strongest association effect in this
region (Fig. 5). TCF7L2 acts within the WNT-signalling pathway,
and effects on diabetes risk seem to be mediated predominantly
through beta-cell dysfunction107.

As expected, given existing effect-size estimates, the signals assoc-
iated with variants within the other established T2D-susceptibility
genes, KCNJ11 (rs5215, r2 of 0.9 with rs5219, E23K) and PPARG
(rs17036328, r2 of 1 with rs1801282, P12A) are less dramatic (trend
test, OR 1.15 and 1.23 respectively, both P5,0.001). These examples
illustrate how genuine disease-susceptibility variants can generate
association signals which would not attract immediate attention
for follow-up in the genomewide context.

Apart from TCF7L2, the scan reveals two signals for T2D with P
values less than 53 1027 (Table 3, Fig. 5). The first of these maps
within the FTO (fat-mass and obesity-associated) gene on chro-
mosome 16q. Several adjacent SNPs (including rs9939609,
rs7193144 and rs8050136) generate signals characterized by a per-
allele OR for T2D of ,1.25 and a risk-allele frequency of ,40% in
controls. As recently described in follow-up studies prompted by this
finding, the effect of these variants on T2D-risk has been replicated
and is mediated entirely by their marked effect on adiposity24.

The third association signal (chromosome 6p22) features a cluster
of highly associated SNPs (including rs9465871) with risk-allele fre-
quencies between 18 and 35%, mapping to intron 5 of the CDKAL1
(CDK5 regulatory subunit associated protein 1-like 1) gene.
Although the function of CDKAL1 is not known, it shares homology
at the protein domain level with CDK5 regulatory subunit associated
protein 1 (CDK5RAP1). CDK5RAP1 is known to inhibit the activa-
tion of CDK5, a cyclin-dependent kinase which has been implicated
in the maintenance of normal beta-cell function108. Our own follow-
up studies, and scans by other groups have shown strong replication
of this finding19–22. The effect of this variant on T2D-risk shows
significant departures from additivity (Supplementary Table 8).

One notable inclusion amongst the variants with more modest
association signals is a cluster of SNPs on chromosome 10 including
rs10748582 and rs7923866, which generate trend test P values
between 1024 and 1025. This cluster maps in the vicinity of the
HHEX (homeobox, hematopoietically expressed) and IDE (insulin-
degrading enzyme) genes, in a region recently highlighted in a GWA
scan for T2D performed in 1363 subjects of French origin109. The
SNPs showing association in our data are proxies for those reported
in the French study and generate similar effect-size estimates for T2D.

Of the three other regions highlighted by the French scan109, none
can be confirmed by our data. The SNP in SLC30A8 associated with
T2D in the French report (rs13266634) is poorly correlated with
SNPs on the Affymetrix chip (r2, 0.01), and extensive recombina-
tion events in the region limit the value of data-imputation methods.
Coverage of the LOC387761 and EXT2 signals is considerably better,
but, for these, neither genotyped nor imputed SNPs show evidence
for association with T2D.

WTCCC data contributed to identification of two additional
robustly replicating T2D signals, mapping to the IGF2BP2 gene
and CDKN2A/CDKN2B regions19,21,22, although neither generated
impressive P values on the primary scan analysis (neither single-point
P was,1024). The latter signal maps to the same region as the CAD
signal on chromosome 9 though different SNPs are involved. The
other SNPs in Table 4 do not map to genes or regions previously
implicated in T2D pathogenesis, and replication efforts to date have
not identified any confirmed signals19.
Expanded reference group analyses. For a fixed number of cases,
power of a case-control study can be increased by enlarging the
reference group. Our main analyses used a control:case ratio of
1.5:1 for each disease. The availability of the other 6 disease data sets
gave us the opportunity to expand the reference group up to a ratio of
,7.5:1, with potential reciprocal benefits for the analysis of each
disease. For BD and T2D the expanded reference group comprised

the 58C and UKBS controls supplemented by the other 6 disease sets;
for CAD andHT this expanded reference groupwas reduced to exclude
HT and CAD respectively; for CD, RA and T1D, the reference group
was augmented only by the cases from the non-autoimmune diseases.

The utility of the expanded reference group approach was demon-
strated by increased evidence for association at most of the loci that
received strongest support from our primary analysis, including
many of the signals at loci known to show robust association in
T1D, T2D and CD (Supplementary Table 9). Additionally, this ana-
lysis elevated several loci with modest levels of statistical significance
in the primary analysis, to the top tier of statistical significance
(P, 53 1027).

Our data indicate that this approach may be a useful adjunct to
conventional analysis and that loci identified as highly significant
should be considered for follow up. There are two important caveats.
First, susceptibility genes that influence both the test disease and one
or more of the diseases included in the reference group will cause
loss of power. Second, a ‘mirror-image’ effect could occur whereby
a strong association within the expanded reference sample (for
example, HLA in autoimmune diseases) causes spurious association
with the opposite allele in the test disease. Thus, a positive association
using an expanded reference group must be interpreted within the
context of association findings in the diseases included within the
reference group.
Disease models. It is of interest to consider which statistical models
best describe the data at and between loci that are strongly associated
with disease status. Biological interpretation of these statistical mod-
els is not straightforward but they can help in choosing more power-
ful statistical tools for detecting associations.

First, consider separately each of the 19 non-MHC SNPs showing
strong evidence for association on either the trend or genotypic test
in Table 3. For four of these 19, the P value on the 2-d.f. genotypic test
was smaller than that on the 1-d.f. trend test (Table 3). When com-
paring disease models, these were also the four SNPs with evidence
for departure from a simple model in which odds of disease increase
multiplicatively with the number of copies of the risk allele (Sup-
plementary Table 8). This supports our view that the genotypic test
should be carried out in addition to the trend test, although should
perhaps be viewed more cautiously for two reasons: it is more sus-
ceptible to genotyping errors; and (on the basis of our findings)
experience does not favour strong dominance effects.

A separate question relates to the best models for the way in which
different loci combine to affect susceptibility to a disease, and as a
consequence on the extent towhichmethods explicitly allowing inter-
actions between loci should be employed to detect associations110.
None of the analyses reported here includes such interactions, so we
are not well placed to address the general question. Nonetheless,
within each collection with multiple associated regions (CD, T1D
and T2D) we considered all pairs of non-MHC SNPs in Table 3 and
looked for a departure from themodel in which the two loci combine
to increase log-odds in an additive fashion.We found suggestive evid-
ence of a departure from multilocus additivity between rs1000113
and rs10761659 in CD (unadjusted P value5 0.002) and between
rs9465871 and rs4506565 in T2D (unadjusted P value5 0.004).
Further investigation of this question, preferably on unbiased sets
of disease loci found through the application of single locus and
interaction-based approaches, would seem warranted.

Discussion

We have studied seven common familial diseases by genome-wide
association analysis in 16,179 individuals. Our findings inform
understanding of the genetic basis of the diseases concerned and
provide methodological insights relevant to the pursuit of GWA
studies in general.

A simple but important observation is that GWA analysis provides
a highly effective approach for exploring the genetic underpinnings
of common familial diseases. Our yield of novel, highly significant
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association findings is comparable to, or exceeds, the number of
those hitherto-generated by candidate gene or positional cloning
efforts. For many of the compelling signals, replication has already
been obtained, including regions on chromosomes 3p21, 5q33,
10q24 and 18p11 for CD23, 12q13, 12q24, 16p13 and 18p11 in
T1D10 and 6p22 and 16q12 in T2D19–22,24. For others, replication is
required to establish a definitive relationship with disease. Additional
findings of particular interest include the identification of several loci
that seem to influence susceptibility to multiple autoimmune dis-
eases, and the suggestion of a novel locus for RA which shows sex-
specific effects.

Our study enables us to make several general recommendations
relevant to GWA studies. The first relates to the importance of careful
quality control. In such large data sets, small systematic differences
can readily produce effects capable of obscuring the true associations
being sought111,112. We implemented extensive quality control checks
to minimize differences in sample DNA concentration, quality and
handling procedures and combined a new genotype-calling algo-
rithm (CHIAMO) with a set of filtering heuristics to select SNPs
for further analysis. Given that infallible detection of incorrect geno-
type calls is not yet possible, the criteria used for SNP exclusion need
to strike a compromise between stringency (which may discard true
signals or generate spurious positives through differential missing-
ness) and leniency (with the danger that true signals are swamped by
spurious findings due to poor genotype calling). As such, systematic
visual inspection of cluster plots for SNPs of interest remains an
integral part of the quality control process.

The potential for population structure to undermine inferences in
case-control association studies has long been debated113 but limited
empirical data have been available to assess the issue. Our study
highlighted several loci, some known and some new, which dem-
onstrate substantial geographical variation in allele frequencies
across Britain (Table 1), most probably due to natural selection in
ancestral populations. Outside these loci, the effects of population
structure are relatively minor, and do not represent a major source of
confounding, provided that individuals with appreciable non-
European ancestry are excluded. Although these conclusions may
not generalize to studies in other locations, this finding reinforces
the logistical and economic benefits of the case-control design over
alternatives (such as family-based association studies).

Our study allowed us to address another important methodo-
logical issue: the adequacy, or otherwise, of using a common set of
controls, rather than a sample recruited explicitly for use with a
defined disease sample. It is often assumed that failure to match cases
and controls for socio-demographic variables will lead to substantial
inflation of the type I error rate. Our study demonstrates that, within
the context of large-scale genetic association studies, for British
populations at least, this concern has been overstated. A related argu-
ment against use of population controls relates to the perceived
impact of misclassification bias when a proportion of controls meet
the criteria used to define cases. However, the consequent loss of
power is modest unless the trait of interest is very common6. Given
the above, the present study provides a compelling case for both the
suitability and efficiency of the common control design in Britain and
warrants its serious consideration elsewhere. Further benefits can be
expected fromuse of this common control genotype data set in future
GWA studies in Britain. Finally, in failing to detect significant differ-
ences in performance between the epidemiological sample (58C) and
that derived from blood donors (UKBS), we validate the use of the
latter samples for cost-effective, large-scale control DNA provision.

In terms of general biological insights, the most profound relate to
inferences about the allelic architecture of common traits. The novel
variants we have uncovered are characterized by modest effect size
(that is, per-allele ORs between 1.2 and 1.5) and even these estimates
are likely to be inflated114. We identified no additional common
variants of very large effect (akin to HLA in T1D: Supplementary
Fig. 15). The observed distribution of effect sizes is consistent with

models based on theoretical considerations and empirical data from
animal models87,115,116 that suggest that, for any given trait, there will
be few (if any) large effects, a handful of modest effects and a sub-
stantial number of genes generating small or very small increases in
disease risk.

There are several important corollaries. Notwithstanding the
incomplete coverage afforded by the genotyping reagents employed,
most of the susceptibility effects yet to be uncovered for these diseases
(at least those attributable to, or tagged by, common SNPs) are likely
to have effects of similar or smaller magnitude to those we have
highlighted. Beyond the signals with the strongest evidence for asso-
ciation, most of which are likely to be real (and many of which have
already been confirmed), there will be many additional susceptibility
variants for which the WTCCC provides some evidence, but for
which extensive replication will be required to establish validity.
PPARG andKCNJ11 provide examples of proven susceptibility genes
(for T2D) that generated onlymodest evidence for association within
the WTCCC, and which would only have been revealed by such
replication efforts. Given the likely preponderance of susceptibility
variants of small effect, the potential for identifying further loci is
limited only by the clinical resources available for replication (assum-
ing suitable study design, accurate genotyping and appropriate ana-
lysis and inference). Provided the attribution of a causal relationship
with the trait of interest is robust, even variants of very small effect
can offer fundamental biological insights.

The patterns of allelic architecture uncovered mean that replica-
tion efforts will need to feature comparably large sample sizes: even if
one accepts more relaxed significance thresholds given the prior
evidence, one has to consider the inflation in effect-size estimates
in the primary study. Caution is required in reaching negative con-
clusions on the basis of a single failed attempt at replication, or any set
of replication attempts that are inadequately powered.

One of our major design considerations was sample size. We set
out to include samples larger than those previously examined for
genome-wide association, and our results suggest that such large
sample sizes were necessary. Evenwith 2,000 cases and 3,000 controls,
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Figure 6 | Strong associations in subsamples of our data. For the 16 SNPs
in Table 3 (outside theMHC)withP values for the trend test below 53 1027,
we randomly generated 1,000 subsets of our full data set corresponding to
case-control studies with different numbers of cases, and the same number
of controls (x axis). The y axis gives the proportion of subsamples of a given
size in which that SNP achieved a P value for the trend test below 53 1027.
SNPs are numbered according to the row in which they occur in Table 3 (so
that, for example, the CAD hit is numbered 2, and the TCF7L2 hit on
chromosome 10 for T2D is numbered 20).
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adequate power is restricted to common variants of relatively large
effect (see Supplementary Table 2). We carried out an experiment to
see which SNPs showing strong evidence of association in the full
data (that is, signals outside MHC with trend test P, 53 1027),
would have been detected at that same threshold in only a subset
of our data (Fig. 6). Because it focuses on a particular but arbitrary
P-value threshold, some care is needed in interpreting the figure.
Nonetheless, for subsamples of 1,000 cases and 1,000 controls, of
the 16 loci detected in the full study, we would have been certain of
seeing only 2, with an expectation of about 6; for subsamples of 1,500
cases and 1,500 controls, we could expect to have seen about 9. These
figures provide stark evidence that the larger the study sample, the
more loci can be expected to reach threshold significance values.
Indeed, given the likely distribution of effect sizes for most complex
traits (see above), there are strong grounds for the prosecution of
GWA studies on an even larger scale than ours, and, wherever pos-
sible, combining the results from existing GWA scans performed for
the same trait. To assist such efforts, individual level data from this
study will be widely available through the Consortium’s Data Access
Committee (follow links from http://www.wtccc.org.uk).

In our study, T1D and CD, the conditions showing strongest
familial aggregation (as quantified by their sibling relative risks,
ls), generated the largest number of highly significant associations.
This relationship was not sustained in comparisons between the
other five diseases. It is important to recognize that the association
signals so far identified account for only a small proportion of overall
familiality. There is a disparity in scale between the modest locus-
specific ls effects attributable to the identified associations (for
instance, the prominent TCF7L2 signal for T2D translates into a ls
of only 1.03) and the estimates of overall familiality that reflects the
combined effects of all genes and shared family environment. These
estimates demonstrate the limited potential of the variants thus far
identified (singly or in combination) to provide clinically useful
prediction of disease117,118.

The identification and characterization of the aetiological variants
that underlie replicated associations will necessitate extensive fine-
mapping and functional validation. We view the WTCCC study and
data set as an important first step towards harnessing the powerful
molecular genomic tools now available to dissect the biological basis
of common disease and translating those findings into improvements
in human health.

METHODS SUMMARY

A detailed description of materials and methods is given in Methods. The work-

flow and organization of the project are given in Supplementary Fig. 16. Case

series came from previously established collections with nationally represent-

ative recruitment: 2,000 samples were genotyped for each. The control samples

came from two sources: half from the 1958 Birth Cohort and the remainder from

a newUK Blood Service sample. The latter collection was established specifically

for this study and is a UK national repository of anonymized DNA samples from

3,622 consenting blood donors. The vast majority of subjects were self-reported

as of European Caucasian ancestry. All DNA samples were requantified and

tested for degradation and PCR amplification. Genotyping was performed using

GeneChip 500K arrays at the Affymetrix Services Lab (California): arrays not

passing the 93% call rate threshold at P5 0.33 with the Dynamic Model algo-

rithm were repeated. CEL (cell intensity) files were transferred to WTCCC for

quantile normalization, and genotypes called using a new genotyping algorithm,

CHIAMO, developed for this project. QC/QA measures included sample call

rate, overall heterozygosity and evidence of non-European ancestry (809 samples

excluded; 16,179 retained for analysis). SNPs were excluded from analysis

because of missing data rates, departures from Hardy–Weinberg equilibrium

and othermetrics (31,011 excluded; 469,557 retained). Standard 1-d.f. and 2-d.f.

tests of case-control association were supplemented with bayesian approaches,

multilocus methods (data imputation) and analyses with combined data sets,

either as additional cases (to detect variants influencing multiple phenotypes)

or as an expanded reference group (to increase power). Results for each SNP for

all analyses reported will be available from http://www.wtccc.org.uk, as will

details allowing other researchers to apply for access to WTCCC genotype data.

Software packages developed within the WTCCC are available on request (see

Methods for details).

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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METHODS
BD phenotype description. BD cases were all over the age of 16 yr, living in

mainland UK and of European descent. Recruitment was undertaken through-

out the UK by teams based in Aberdeen (8% of cases), Birmingham (35% cases),

Cardiff (33% cases), London (15% cases) and Newcastle (9% cases). Individuals

who had been in contact with mental health services were recruited if they

suffered with a major mood disorder in which clinically significant episodes of

elevatedmood had occurred. This was defined as a lifetime diagnosis of a bipolar

mood disorder according to Research Diagnostic Criteria119 and included the

bipolar subtypes that have been shown in family studies to co-aggregate for

example29: bipolar I disorder (71% cases), schizoaffective disorder bipolar type

(15% cases), bipolar II disorder (9% cases) andmanic disorder (5% cases). After
providing written informed consent, all subjects were interviewed by a trained

psychologist or psychiatrist using a semi-structured lifetime diagnostic psychi-

atric interview (in most cases the Schedules for Clinical Assessment in

Neuropsychiatry120 and available psychiatric medical records were reviewed).

Using all available data, best-estimate ratings were made for a set of key pheno-

typic measures on the basis of the OPCRIT checklist (which covers both psycho-

pathology and course of illness)121,122 and lifetime psychiatric diagnoses were

assigned according to the Research Diagnostic Criteria119. The reliability of these

methods has been shown to be high119,123,124. Further details of clinical methodo-

logy can be found in Green, 2005 (ref. 123) and Green, 2006 (ref. 124).

CAD phenotype description. CAD cases had a validated history of either myo-

cardial infarction or coronary revascularization (coronary artery bypass surgery

or percutaneous coronary angioplasty) before their 66th birthday. Verification
of the history of CAD was required either from hospital records or the primary

care physician. Recruitment was carried out on a national basis in the UK

through a direct approach to the public via (1) the media and (2) mailing all

general practices (family physicians) with information about the study, as prev-

iously described125. In an initial pilot phase, potential participants were also

identified and approached through local CAD databases in the two lead centres

(Leeds and Leicester). Although the majority of subjects had at least one further

sib also affected with premature CAD, only one subject from each family was

included in the present study.

CD phenotype description. CD cases were attendees at inflammatory bowel

disease clinics in and around the five centres which contributed samples to the

WTCCC (Cambridge, Oxford, London, Newcastle, Edinburgh). Ascertainment
was based on a confirmed diagnosis of Crohn’s disease (CD) using conventional

endoscopic, radiological and histopathological criteria126. We included all sub-

types of CD as classified by disease extent and behaviour and the collection was

not specifically enriched for family history or early age of onset. The median age

of diagnosis was 26.1 yr and 62% of the collection had undergone CD-related

abdominal surgery. A small proportion had previously been recruited as mem-

bers of multiply affected families but only one affected individual was included

per family.

HTphenotype description.HT cases comprised severely hypertensive probands

ascertained from families with multiplex affected sibships or as parent–offspring

trios. They were of white British ancestry (up to level of grand-parents) and were

recruited from the Medical Research Council General Practice Framework and
other primary care practices in the UK77. Each case had a history of hypertension

diagnosed before 60 yr of age, with confirmed blood pressure recordings corres-

ponding to seated levels.150/100mmHg (if based on one reading), or the

mean of 3 readings greater than 145/95mmHg. These criteria correspond to

the threshold for the uppermost 5% of blood pressure distribution in a contem-

poraneous health screening survey of 5,000 British men and women in 1995 (N.

Wald and M. Law, personal communication). We excluded hypertensive indi-

viduals who self-reportedly consumed.21 units of alcohol per week and those

with diabetes, intrinsic renal disease, a history of secondary hypertension or co-

existing illness. Cases did not undergo systematic genetic screening to exclude

the (rare) known monogenic causes of HT. We focused on the recruitment of

hypertensive individuals with body mass indices,30 kgm22. The probands

were extensively phenotyped by trained nurses (see http://www.brightstudy.

ac.uk for standard operating procedures, additional phenotypes and study ques-

tionnaires). Sample selection for WTCCC was based on DNA availability and

quality.

RA phenotype description. RA cases were recruited to studies coordinated by

the ARC (Arthritis Research Campaign) Epidemiology Unit. All subjects were

Caucasian over the age of 18 yr and satisfied the 1987 American College of

Rheumatology Criteria for RA127 modified for genetic studies128. Of the cases,

404 were recruited as part of the arc National Repository of FamilyMaterial129: of

these, 301 were probands from affected sibling pair families and 103 were cases

from trio families, having both parents or one parent and one unaffected sibling

available for study. A further 109 cases were recruited from the Norfolk Arthritis

Register, a primary care-based inception collection130. All other cases (n5 1348)

were recruited from NHS Rheumatology Clinics throughout the UK. Samples

forWTCCCwere selected from the various studies on the basis of the quality and

availability of DNA.

T1Dphenotype description.T1D caseswere recruited frompaediatric and adult

diabetes clinics at 150 National Health Service hospitals across mainland UK.

The total T1D case data set (n5,8,000) from which the WTCCC cases were

selected, represents close to half the T1D cases seen in such clinics. Nationwide

coverage was achieved through the voluntary efforts of members of the British

Society for Paediatric Endocrinology and Diabetes, who recruited about half of

cases, the rest coming from peripatetic nurses employed by the JDRF/WTGRID

project (http://www-gene.cimr.cam.ac.uk/todd/)131. To establish a positive diag-

nosis of T1D (and, in particular, to distinguish it from the more common, but

later onset T2D), we required all cases to have an age of diagnosis below 17 yr and

insulin dependence since diagnosis (with a minimum period of at least 6

months). However, a very few subjects were subsequently discovered to be suf-

fering from rare monogenic disorders, such as maturity onset diabetes of the

young (MODY), and latterly permanent neonatal diabetes (PNDM): these were

excluded.

T2D phenotype description. The T2D cases were selected from UK Caucasian

subjects who form part of the Diabetes UKWarren 2 repository. In each case, the

diagnosis of diabetes was based on either current prescribed treatment with

sulphonylureas, biguanides, other oral agents and/or insulin or, in the case of

individuals treated with diet alone, historical or contemporary laboratory evid-

ence of hyperglycaemia (as defined by the World Health Organization). Other

forms of diabetes (for example,maturity-onset diabetes of the young,mitochon-

drial diabetes, and type 1 diabetes) were excluded by standard clinical criteria

based on personal and family history. Criteria for excluding autoimmune dia-

betes included absence of first-degree relatives with T1D, an interval of$1 yr

between diagnosis and institution of regular insulin therapy and negative testing

for antibodies to glutamic acid decarboxylase (anti-GAD). Cases were limited to

thosewho reported that all four grandparents had exclusively British and/or Irish

origin, by both self-reported ethnicity and place of birth. All were diagnosed

between age 25 and 75. Approximately 30% were explicitly recruited as part of

multiplex sibships132 and ,25% were offspring in parent–offspring ‘trios’ or

‘duos’ (that is, families comprising only one parent complemented by additional

sibs)133. The remainder were recruited as isolated cases but these cases were

(compared to population-based cases) of relatively early onset and had a high

proportion of T2D parents and/or siblings134. Cases were ascertained across the

UK but were centred around the main collection centres (Exeter, London,

Newcastle, Norwich, Oxford). Selection of the samples typed in WTCCC from

the larger collections was based primarily on DNA availability and success in

passing Diabetes and Inflammation Laboratory (DIL)/Wellcome Trust Sanger

Institute (WTSI) DNA quality control.

1958 Birth Cohort Controls (58BC). The 1958 Birth Cohort (also known as the
National Child Development Study) includes all births in England, Wales and

Scotland, during one week in 1958. From an original sample of over 17,000

births, survivors were followed up at ages 7, 11, 16, 23, 33 and 42 yr (http://

www.cls.ioe.ac.uk/studies.asp?section5000100020003)135. In a biomedical

examination at 44-45 yr136 (http://www.b58cgene.sgul.ac.uk/followup.php),

9,377 cohort members were visited at home providing 7,692 blood samples with

consent for future Epstein–Barr virus (EBV)-transformed cell lines. DNA sam-

ples extracted from 1,500 cell lines of self-reported white ethnicity and repres-

entative of gender and each geographical region were selected for use as controls.

UK Blood Services Controls (UKBS). The second set of common controls was

made up of 1,500 individuals selected from a sample of blood donors recruited as

part of the current project.WTCCC in collaboration with the UK Blood Services

(NHSBT in England, SNBTS in Scotland and WBS in Wales) set up a UK

national repository of anonymized samples of DNA and viable mononuclear

cells from 3,622 consenting blood donors, age range 18–69 yr (ethical approval

05/Q0106/74). A set of 1,564 samples was selected from the 3622 samples

recruited based on sex and geographical region (to reproduce the distribution

of the samples of the 1958 Birth Cohort) for use as common controls in the

WTCCC study. DNA was extracted as described below with a yield of

30546 1207mg (mean6 1 s.d.).

Protocol for DNA extraction.White blood cells were isolated from the filters by

first pushing 10ml air through the filter in contra direction to the initial blood

flow through the filter, followed by 40ml PBS, collecting into a 50ml centrifuge

tube, and centrifugation (2.000 r.p.m., 10min, 20 uC).Cells were lysed by adding
40ml Lysis buffer (320mM Sucrose, 1% Triton-X-100, 4.9mM MgCl2, 1mM

TRIS-HCl pH7.4) and pelleted by centrifugation (2,500 r.p.m., 15min, 4 uC).
Pellets were frozen before extraction. Pellets were digested overnight at 37 uC
with 5.25M GuHCl, 490mM NH4Ac, 1.25% Na Sarcosyl and 0.125mgml21

Proteinase K and then mixed with 2ml chloroform to form a white emulsion.

The aqueous layer was separated by centrifugation (2,500 r.p.m., 3min) and
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DNA was precipitated in ethanol overnight at 220 uC. DNA was further pre-

cipitated by rotation (40 r.p.m., 5min) and then pelleted by centrifugation

(3,000 r.p.m., 15min). Pellets were washed twice by rinsing with 2ml 70%

ethanol, followed by centrifugation (3,000 r.p.m., 5min). DNA pellets were

air-dried before re-suspension in TE buffer (10mM Tris, 0.1mM EDTA).

Sample handling. Each participating sample collection was issued unique

WTCCC barcode labels and a spreadsheet with unique sample identifiers for

logging information on case/control status, DNA concentration (requested at

100 ngml21), DNA extractionmethod, sex, broad geographical region and age at

requirement. Each collection supplied 10 mg aliquots of anonymized samples in

bar-coded, deep 96-well plates. On receipt, samples had their DNA concentra-

tion measured by Picogreen (triplicate measurements), were checked for DNA

degradation on a 0.75% agarose gel, and genotyped with up to 38 SNPs arranged

in two multiplex reactions using the MassExtend (hME) and/or iPLEX37 assay.

The above SNPs served for obtaining a molecular fingerprint (25 of the 38 SNPs

were present on the GeneChip 500K) and experimentally confirming the sex of

each sample.

Samples with concentrations$50 ngml21, showing limited or no degrada-

tion, having a minimum of 7/10 (hME reaction) and/or 14/23 (iPLEX reaction)

SNPs typed, and having the sex markers in agreement or not violating the

supplied information were deemed fit for whole genome genotyping. Note that

the hME set was replaced with a second iPLEX reaction in the course of the

project to increase marker density. We selected 2,000 and 1,500 samples from

each disease and control collection respectively. Selected samples were normal-

ized to 50 ng ml21 and re-arrayed robotically into 96-well plates so that each plate

was composed of 94 samples representing at least two different collections at a

ratio of 1:1. For each collection, the selected samples were balanced first for sex

and then geographical region (see above).

Genotyping. SNP genotyping was performed with the commercial release of the

GeneChip 500K arrays at Affymetrix Services Lab. A modified version of the

genotyping assay developed for the 100K Mapping Array137 was used. In brief,

two aliquots of 250 ng of DNA each are digested withNspI and StyI, respectively,

an adaptor is ligated and molecules are then fragmented and labelled. At this

stage each enzyme preparation is hybridized to the corresponding SNP array

(262,000 and 238,000 on the NspI and StyI array respectively). Samples were

processed in 96-well plate format, each plate carried a positive and a negative

control, up to the hybridization step. Individual arrays not passing the 93% call

rate threshold at P5 0.33 with the Dynamic Model algorithm138 were repeated

(fresh aliquot of initial end-labelled reaction). Samples failing twice at the

hybridization stage were reprocessed using a fresh DNA aliquot. Affymetrix

delivered successful samples as those having a Dynamic Model call rate of

93% at P5 0.33 for each array, over 90% concordance for the 50 SNPs that

are common to the two arrays, both arrays agreed on gender, and showed over

70% identity to the Sequenom genotypes supplied by WTCCC.

CEL files provided the intensities of the various probes on each chip. Initially,

genotypes were called with the Dynamic Model138 algorithm. Affymetrix subse-

quently developed an improved algorithm, BRLMM (Bayesian Robust Linear

Model with Mahalanobis distance classifier139,140). This processes batches of

samples and uses clustering techniques to call genotypes (the ‘mismatch’ probe

intensities are not used). In Affymetrix’s standard protocol it is applied in

batches of 96 samples (plates). This is, of course, a very small sample size and,

for some SNPs, some clusters will contain few, if any, observations. Thismight be

countered by combining information about cluster location over a large number

of SNPs.

Throughout, physical coordinates refer to NCBI build-35 of the human gen-

ome. Alleles are expressed in the forward (1) strand of the reference human

genome (NCBI build-35).

Power calculations. We assessed power of the Affymetrix 500K chip using the

following simulation experiment. Separately for each SNPwithMAF.5% in the

10HapMapENCODE regions, we assumed the SNPwas causative and simulated

genotype data at all SNPs in the same region as the putative disease SNP in case-

control panels of 2,000 cases and 3,000 controls with linkage disequilibrium

patterns thatmatch those inHapMap. For controls, these simulationswere based

on the imputation algorithm described below (with all genotype data initially set

tomissing in the 3,000 control individuals). For cases, the assumed effect size was

first used to calculate genotype frequencies in cases (via Bayes’ theorem), and

genotypes in cases at the putative SNP were then simulated independently from

theses calculated frequencies. Genotypes at all other SNPs in the region in cases

were then simulated using the imputation algorithm described below (with all

data other than the genotypes at the causative SNP initially set to missing in the

cases). For each such simulated case-control panel, trend tests were performed at

each of the SNPs in the region that are actually on the Affymetrix chip, and if any

of these reached the stated P-value threshold the putative disease SNP was

deemed to be detected, and otherwise to be undetected. Power estimates are

then calculated as the proportion of putative disease SNPs with MAFs.5%

across the HapMap ENCODE regions that are detected at the given P-value

threshold. There are various approximations here. Actual numbers of cases

and controls for each disease are slightly smaller than the 3,000:2,000 values used

in the simulations, but in the other direction, our simulations ignore the pos-

sibility that a disease SNP might be detected by a genotyped SNP outside its

ENCODE region. The accuracy reported below of the imputation algorithm in

imputing genotypes leads us to believe these simulations should be a reasonable

proxy for real data. Some such simulation is needed if power calculations are to

take account of the fact that any given putative disease SNP could typically be

detected by several SNPs on the chip. Exploitation of this simulation approach to

assess power across different platforms and SNP chips and for different experi-

mental designs will be reported elsewhere.

CHIAMO.We developed a new genotype calling algorithm, CHIAMO, which is

applied after quantile normalization of the data from each sample. A complete

description is given in Supplementary Information. We briefly summarize some

features here. Normalized intensities for each genotype were mapped to a two-

dimensional intensity vector and then we applied CHIAMO, which uses a baye-

sian hierarchical 4-class mixture model to call genotypes for the whole project.

We used optimization based on 12 random starts to find the set of parameters (ĥh)
that maximize the posterior distribution of the model. This parameter set was

used to calculate the maximum a posteriori estimates of the probabilities of each

genotype call, Pr Zij Data, ĥh
���

� �
, where Zijg{0, 1, 2, 3};{AA, AB, BB, null} is the

genotype call for individual j in collection i. All CHIAMOgenotype calls analysed
in this paper were based on an a posteriori probability threshold of 0.9 for
making a call, following our analysis of the relationship between concordance
and missing data rates (data not shown). CHIAMO differs from BRLMM in
several respects: (1) it uses a different transformation of the CEL files to give the
two-dimensional summary for each individual at an SNP leading to better
defined clusters; (2) it makes use of mis-match probe signals; (3) it uses a
different method for fitting the clusters; and (4) it allows the data for all samples
to be called simultaneously, thus allowing better estimation of cluster location
and shape parameters, while making allowance for possible differences in these
parameter values between case/control groups that could arise as a result of
differences in DNA quality. This is achieved using a hierarchical statistical model
that specifies the joint distribution of the three cluster centres, their spread, and
likely allele frequencies (using HapMap) and genotype frequencies (centred on
Hardy–Weinberg proportions but allowing some variation).

CHIAMO improved both call rate and accuracy in comparison to BRLMM,

the current standard Affymetrix calling algorithm (Supplementary Table 3)—it

roughly halved missing data rates and discordance rates with another platform.

See Supplementary Information for full details, discussion of some challenges for

genotype calling, and example cluster plots (Supplementary Figs 10 and 17).

Quantile-quantile plots. Quantile-quantile (Q-Q) plots are constructed by

ranking a set of values of a statistic from smallest to largest (the ‘order statistics’)

and plotting them against their expected values, given the assumption that the

values have been sampled from a distribution of known theoretical form (in our

case, the chi-squared distribution, usually on one degree of freedom—for

example, the distribution of our trend tests under the null hypothesis).

Deviations from the line of equality indicate either that the theoretical distri-

bution is incorrect, or that the sample is contaminated with values generated in

some othermanner (for example, by a true association). To aid interpretation of

such plots we have also calculated 95% ‘concentration bands’ (shaded grey in all

Q-Q plots). These are formed by calculating, for each order statistic, the 2.5th

and 97.5th centiles of the distribution of the order statistic under random sam-

pling and the null hypothesis (for details see ref. 141). We should add two notes

of caution. First, concentration bands are calculated point by point and,

although there are very strong correlations between nearby order statistics, the

probability that a real quantile-quantile plot will stray outside the concentration

band at some point is some bit larger than 5%. Second, the theoretical chi-

squared distribution is an approximation, valid for large samples; it is not clear

whether this approximation continues to hold into the extreme right hand tail of

the distribution explored in a GWA study (although the indications are that it is

probably not far wrong for a study as large as ours).

Data quality control.Of samples for whichAffymetrix returnedCEL files, a total

of 809 were excluded from the analysis. A complete breakdown by collection is

given in Supplementary Table 4.Missing data rate per sample acts as an indicator

of lowDNAquality.Most samples had very low rates ofmissing data (study-wide

average 0.00925, standard deviation 0.0187) andwe chose to exclude 250 samples

with.3% missing data across all SNPs (Supplementary Fig. 18, and Supple-

mentary Tables 4 and 13). We also set empirical thresholds on genome-wide

heterozygosity (excess heterozygosity in particularmay indicate contamination).

Six samples with.30% heterozygosity and a further three with,23% hetero-

zygosity were excluded (see Supplementary Fig. 18). We excluded 16 samples
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with discrepancies between WTCCC information and external identifying

information (such as genotypes from another experiment, blood type or incor-

rect disease status). We sought to detect individuals with non-Caucasian ances-

try using multi-dimensional scaling to provide a two-dimensional projection of

the data whose axes represent geographic genetic variation. In the interest of

computational efficiency and to avoid confounding of the multi-dimensional

scaling by extended linkage disequilibriumwe thinned the data to a set of 71,458

SNPs, within which no pair were correlated with r2. 0.2. For this set of nearly

independent SNPs we computed genome-wide average identity by state (sum of

the number of identical-by-state alleles at each locus divided by twice the number

of loci) between each pair of individuals in each sample collection along with the

270 HapMap samples. We converted these identity by-state-relationships to

distances by subtracting them from 1, and the matrix of pairwise identity by

state values was used as input to multi-dimensional scaling. The projection onto

the two multi-dimensional scaling axes is shown in Supplementary Fig. 5. We

excluded 153 samples that were clearly separate from the main cluster of

WTCCC individuals. Exclusion of these individuals resulted in a substantial

reduction in estimates of over-dispersion in test statistic distributions (data

not shown). We also excluded 295 duplicated (.99% identity) and 86 related

(86–98% identity) samples from the analysis.

Filtering out suboptimal markers depends on both the platform and the

genotype calling algorithm. We experimented with various quality metrics for

CHIAMO calls, for example, based on the location and/or separation of the

clusters, but found that the best indicator of a SNP being difficult to call was

the amount of missing data in its calls: CHIAMO consistently marked many

individuals missing for SNPs with poorly defined or overlapping clusters,

whereas it successfully called genotypes for nearly all individuals on high-quality

SNPs (data not shown). We excluded 26,567 SNPs with a study-wide missing

data rate.5% (Supplementary Fig. 19), or.1% for SNPs with a study-wide

MAF, 5%. We additionally excluded 4,351 SNPs with Hardy–Weinberg exact

P value, 5.73 1027 in the combined set of 2,938 controls, and 93 SNPs with

P value, 5.73 1027 for either a one- or two-degree of freedom test of asso-

ciation between the two control groups (corresponding to a 1 d.f. chi-squared

statistic of about 25). See Supplementary Fig. 20 and Fig. 1 respectively for the

empirical distributions of these statistics used to motivate the thresholds above.

Overall, we found that the 809 excluded individuals (which represent 4.8% of

the study samples) accounted for 35.6% of the missing data at non-excluded

SNPs. In total, 469,557 SNPs passed the quality control filters.

Supplementary Fig. 20 shows the effect of quality control filters, and visual

inspection of the cluster plots of SNPs showing apparently strong association, on

quantile-quantile plots for one disease (T2D, others are similar), and the success

of these filters in excluding poorly performing SNPs. The figure (panel d) also

shows themarked effect on the tails of the distribution of test statistics of regions

of genuine association (for this disease the three regions removed because of

strong evidence of association have all been independently replicated, see main

text). The aim in filtering is to exclude poor SNPs but without removing genuine

associations. No single criterion will do this. In order not to exclude possible

genuine associations, we chose to apply relatively light quality control filters but

then to subject all apparently associated SNPs to visual inspection of cluster plots

(see Supplementary Information). Around 100 cluster plots were assessed per

disease.

We used X-chromosome SNPs to check for sex discrepancies with the sample

files (Supplementary Fig. 21). These were fed back to disease groups for amend-

ment and verification. The,80 samples where it was not possible to discern the

source of the discrepancy were left in the study for analysis, on the grounds that

mishandlingwas considered unlikely to have introduced samples with altogether

different phenotypes.

DNA quality between cases and controls could result in false-positive associa-

tions through differential effects on genotype calling111. DNAs in our study came

from various sources between, and in some cases within, case and control series,

but with the combination of centralized sample quality control, simultaneous

genotype calling with CHIAMO (which explicitly allows for differences between

collections), and inspection of cluster plots for SNPswith very smallP values, our

study did not experience such difficulties.

Comparing linkage disequilibrium. Two questions which have been raised

about the HapMap data are how well it describes linkage disequilibrium in

populations other than the ones that were sampled, and whether the sample

sizes in HapMap (60 Caucasian individuals, for example) are adequate to

describe patterns of linkage disequilibrium. With data on 2,938 controls and

16,179 individuals in total at around 400,000 polymorphic SNPs, we are well

placed to address this for the British population. Initial analyses suggest that

patterns of linkage disequilibrium in our samples are very similar to those in

HapMap. As an example, Supplementary Fig. 3 compares patterns of linkage

disequilibrium in HapMap CEU individuals and our 58C sample at SNPs on the

Affymetrix chip across 223 1Mb regions of the genome and they seem almost

identical.We calculated r2 values directly from the phased haplotypes available in

HapMap, but using unphased genotype data from our study. Note that visual

representations of linkage disequilibrium in this form can be very sensitive to

SNP density so comparisons across regions is difficult without correction for

SNP density, and direct comparison of linkage disequilibrium patterns at all

HapMap SNPs with those at the subset of SNPs on the Affymetrix 500K chip

is not straightforward.

Geographical variation and population structure. Principal component ana-

lysis was performed as a two-stage process: we formed a matrix of estimated

correlations (formally, the inner productmeasure of similarity) between all pairs

of individuals, and then computed the eigenvectors and eigenvalues of that

matrix. We estimated the correlation between two individuals as described

by14. We identified components that reflected genome-wide structure in two

ways. First, we created two subsets of the data containing SNPs from the odd-

and even-numbered chromosomes, repeated the PCA on each of these, and

inspected scatter plots of pairs of components between the two subsets of the

data. A component which is due to a region of linkage disequilibrium on a

chromosome (as opposed to genome-wide structure) will appear only when
analysing the data set containing SNPs from that chromosome. Second, we

computed the score of every SNP on the components. For a component that

is due to a region of linkage disequilibrium, there will be a spike of high SNP

scores only in that region. Tominimize the contribution from regions of extens-

ive strong linkage disequilibrium, the correlation estimates were based on a

subset of 197,175 SNPs that were spaced at least 0.001 cM apart (HapMap esti-

mates) and specifically excluded the MHC region.

To assess the level of over-dispersion in each collection we first created a very

clean set of data to ameliorate the effects of over-dispersion due to calling

problems and missing data. In addition to the main filters described above, we

filtered out all SNPs that had a clear genotype-calling problem revealed by visual

inspection, SNPswith a study-widemissing data rate.1%and SNPswith study-

wide minor allele frequency,1%. Around 360,000 SNPs passed these filters.

Estimates of l were calculated using an estimator based on the median test

statistic15. Estimates of l were also calculated from tests that conditioned on

the scores for each individual along the two estimated principal components

described above. The tests (1 d.f. and 2 d.f.) were carried out by including the

scores as additional covariates in a logistic regression model fit.

Bayes factors. The box in the main text makes the point that understanding the

strength of evidence conveyed by a particular P value also requires knowledge of

power. In contrast, the Bayes factor (BF) provides a single measure of the

strength of the evidence for an association, and we report these in addition to

P values (Supplementary Table 14). As for power, calculation of Bayes factors

requires assumptions about effect sizes. The assumptions underlying our calcu-

lations are given below and in Supplementary Information.

There is broad agreement between the way in which P values and our Bayes

factors rank SNPs, except for SNPswith lowMAFs (Supplementary Fig. 22). This

is intuitive: unless one believed, a priori, that rare causative SNPs have substan-

tially larger effect sizes, there will be reduced power for these SNPs and hence

weaker evidence for association than for common SNPs with the same P value.

One perspective on GWAs is that in practice they will be used to prioritize

SNPs for further study or additional typing. In addition to BFs providing a single

quantity that can be directly compared between SNPs, it is also straightforward

for investigators to give different a priori weights to different classes of SNPs,

such as non-synonymous (ns)SNPs, genic SNPs, SNPs in highly conserved

regions, or SNPs in linkage disequilibrium with many (or few) other SNPs.

We now describe calculation of the Bayes factors. We use M0 to denote a

model of no association,M1 for a model with an additive effect on the log-odds

scale and M2 for a general 3 parameter model of association. At each SNP we

calculate two Bayes factors: one for the additive model versus the null model,

BF1, and one for the general model versus the null model, BF2. That is,

BF1~
Pr Data M1jð Þ
Pr Data M0jð Þ , BF2~

Pr Data M2jð Þ
Pr Data M0jð Þ ,

where Pr Data Mijð Þ~
Ð
Pr Data hi , Mijð ÞPr hi Mijð Þdh, where h denotes the para-

meters for the model. For all 3 models we use a logistic regression model for the

likelihood Pr Data hi , Mijð Þ where the log-odds for individual i is equal to m for

model M0, mzcZi for model M1 and mzcI(Zi~1)zw(2cI(Zi~2)) for model

M2. Zi is the genotype (coded 0, 1 and 2) for individual i and I Zi~mð Þ is the
indicator function that individual i has the genotype coded asm. For eachmodel

we choose the priors on the parameters, Pr hi Mijð Þ, to reflect our belief about the
likely effect sizes underlying complex trait loci.

The parameter c inmodelsM1 andM2 is the increase in log-odds of disease for

every copy of the allele coded as 1, and ec is the additive model odds ratio. For

both models we use a N(0, 0.2) prior on c. This prior puts probability 0.31 on

doi:10.1038/nature05911

Nature   ©2007 Publishing Group



odds ratios above 1.2 or below 0.8, and probability 0.02 on odds ratios above 1.5

or below 0.5. The parameter m in all three models represents the baseline odds of

disease. In a case-control design the numbers of cases in the sample have been

elevated artificially, which will have a large effect on likely values of m. Our prior

beliefs about the baseline risk of disease must take this into account. For all three

models we have used a N(0, 1) for m and have found that the resulting Bayes

factors are relatively insensitive to choice of priors for this parameter as long as

the same prior is used for the two models being compared. The parameter w in

modelM2 represents a recessive effect over and above an additive effect.We use a

N(1, 1) prior for w. Combined with the prior on c, this results in a prior prob-

ability of 0.25 on the odds ratios above 1.5 and below 0.5 for the genotype coded

as 2. In addition, we note that the evaluation of the Bayes factors will depend on

the way the alleles at the SNP have been coded 0 and 1. To account for this we

average over the two possible codings of each SNP with equal weight. A fuller

description of the priors used can be found in Supplementary Information.

Sex-differentiated tests. We examined the possibility of differential genetic

effects in males and females by reapplying the two single-locus analyses (trend

test and genotypic test) separately in males and females and combining the

results (simply adding the chi-squared statistics for themale and female analyses,

and comparing with the 2 d.f. or 4 d.f. null hypothesis; results are shown in

Supplementary Table 15). We refer to this as a sex-differentiated test. This test

is sensitive to association that is of a different magnitude and/or direction in the

two sexes, although it is less powerful than the simple test when the effect size

does not vary with sex.

X Chromosome analysis. For several reasons the X chromosome needs to be

treated differently from the autosomes (note that the Affymetrix chip used does

not assay the Y chromosome). First, samples sizes and hence power are different

from the autosomes (only one copy of X in males). Also, because the effective

population size on the X chromosome is smaller than the autosomes, linkage

disequilibrium extends further. And unlike the autosomes, there are choices in

how to implement even single locus analyses: these relate to the relative weight to

be given to males and females in comparisons between cases and controls.

For autosomal SNPs, the 1 d.f. trend test statistic is calculated by dividing the

square of the difference between means of the SNP genotypes (scored 0, 1, 2)

between cases and controls by an estimate of its variance. The variance estimate

used is an empirical estimate that does not assume Hardy–Weinberg equilib-

rium. The numerator can also be represented as the squared difference in allele

frequencies between cases and controls, as in the allele counting test. At first

sight, a natural generalization of this test to deal with SNPs on theX chromosome

would involve comparing allele frequencies, by allele counting, but using a

variance estimate which does not assume Hardy–Weinberg equilibrium in

females. However, we took the view that, because most loci on the X chro-

mosome are subject to X chromosome inactivation, it is more logical to treat

males as if they were homozygous females. Thus we score female genotypes 0, 1

or 2 and male genotypes 0 or 2, comparing mean scores of cases and controls as

before. The variance estimate allows for the different variance ofmale and female

contributions and does not assume Hardy–Weinberg equilibrium in females.

A stratified version of the test is constructed using the same principles by

which the trend test is extended to the Mantel extension test; a score that con-

trasts cases and controls is computed for each stratum together with its variance;

these are then summedover strata. The final test is the squared total score divided

by the total variance. To extend these tests to a 2 d.f. test, we add a score that

compares heterozygosity between cases and controls. Clearly, only females con-

tribute to this component. Results of these analyses of X chromosome SNPs are

shown in Supplementary Table 16.

Multilocus analysis.Weuse (1) the genotype data of this study, (2) theHapMap

data, and (3) a population genetics model, to simulate genotypes at the HapMap

SNPs that are not on the Affymetrix 500K chip. Informally, we determine which

haplotypes are present in each individual in a region, and then use HapMap to

‘fill in’ these haplotypes at untyped SNPs (see below for details). These ‘in silico’

genotypes are then tested for associationwith the disease as before. This powerful

multilocus tool for association studies143 has the advantage of using information

from all markers in linkage disequilibrium with an untyped SNP, but in a way

that decreases with genetic distance. Our imputation method was applied to

individuals passing project filters, and used markers which passed the project

filters and in addition hadMAF. 1%. As a validationwe compared our imputed

genotypes for 58C individuals with genotypes obtained on an Illumina platform

for 10,180 SNPs that are polymorphic in CEUHapMap samples. At these SNPs,

for imputed genotypes with posterior call probabilities above 0.95, there was

98.4% agreement with the Illumina genotypes.

In our association analyseswe imputed genotypes at 2,139,483HapMap SNPs,

and tested these for association with each disease using the trend test or the

genotypic test. We included the results from imputed SNPs in the signal plots

(Fig. 5) because they are useful in (1) assessing signal strengthwithin a region; (2)

providing a wider range of SNPs for follow up; and (3) indicating possible

locations for the causal variant. For example in the case of TCF7L2 in T2D, there

is a substantially stronger signal from rs7903146 than for any of the typed SNPs

(see also Supplementary Fig. 12).

To be conservative, stringent quality control filters were applied to genomic

regions where imputed SNPs (but not genotyped SNPs) were responsible for a

strong signal for association. These were as follows: (1) any such region was

required to contain more than one imputed SNP showing the required level of

association with a MAF. 2% and posterior probability for imputed genotypes

averaged across the SNP.0.95 (empirical studies showed imputation at low

MAF SNPs more prone to error); (2) all cluster plots for genotyped SNPs within

0.3 cM (from HapMap Phase II estimated recombination rates) were checked

and where there was evidence of any mis-calling the region was rejected (the

major problem with imputation arises around SNPs with genotype calling

errors); and (3) if there was no genotyped SNP with a P value, 1024 for asso-

ciation on either trend or genotypic test, the region was rejected. Note that

accuracy of imputation with these filters applied will be larger than the figure

of 98.4% reported above.

We use H5{H1,…, HN} to denote a set of N known haplotypes where

Hi5{Hi1,…, HiL} is an individual haplotype and L is the number of SNP loci.

In practice, we set H to be the 120 CEU haplotypes estimated as part of the

HapMapproject owing to the expected similarity in haplotype structure between

the CEU and UK populations. We let G5{G1,…, Gk} denote the genotype data

on the K individuals in the study where Gi5{Gi1,…, GiL} and Gijg{0, 1, 2,

missing}. In this setting, the majority of SNPs will have entirely missing geno-

types, because the Affymetrix 500K chip has approximately 1/6th of the number

of SNPs in the Phase II HapMap. The missing genotypes are imputed by mod-

elling the distribution of each individual’s genotype vectorGi conditional on the

known set of haplotypesH, Pr Gi Hjð Þ. Our model for each individual’s genotype

vector is a Hidden Markov Model in which the hidden states are a sequence of

pairs of the N known haplotypes in the set H. That is,

Pr Gi Hjð Þ~
X

Z
1ð Þ

i
, Z

2ð Þ
i

Pr Gi Z
1ð Þ

i , Z
2ð Þ

i , H
���

� �
Pr Z

1ð Þ
i , Z

2ð Þ
i

� �
,

whereZ
1ð Þ

i ~ Z
1ð Þ

i1 , . . . , Z
1ð Þ

iL

n o
andZ

2ð Þ
i ~ Z

2ð Þ
i1 , . . . , Z

2ð Þ
iL

n o
are the two sequences

of copying states at the L sites and Z
jð Þ

il [ 1, . . . , Nf g. Here, Pr Z
1ð Þ

i , Z
2ð Þ

i

� �
defines

our prior probability on how the sequences of copying states change along the

sequence and Pr Gi Z
1ð Þ

i , Z
2ð Þ

i , H
���

� �
models how the observed genotypes will be

close to but not exactly the same as the haplotypes being copied. The precise

form of these terms (described in ref. 142) are based on an approximate popu-

lation genetics model that makes direct use of the recently estimated fine-scale

recombination map across the genome142,143. At each of the missing genotypes in

the study, we use this model to calculate probabilities for the three possible

genotypes. At each imputed SNP, we used these probabilities to calculate the

233 table of expected genotype counts for cases and controls and used these

counts to carry out a standard test of association.

Diseasemodels.To test for deviations from additivity (in log-odds) at a locus we

fit a logistic regression model using the function glm in the statistical software R

(http://www.r-project.org/). For each region we considered the most significant

SNP and compared an additivemodel to a general 2-d.f.model by fitting amodel

with an additive sub-model nested in a general model. The additive effect was

modelled by a variable encoded 0, 1, or 2 for the effect at the three genotypes and

a second term for a general model was included by a variable encoded 1 for

heterozygotes and 0 otherwise. We rejected an additive model if the second term

was significant and then compared a dominant or recessive model to a general

model. For the pairwise interaction analysis, we fixed themarginal model at each

locus on the basis of the single locus analysis. We compared the two locus model

with these marginals and no interaction terms with a larger model including

interactions. This larger interaction model has 1, 2, or 4 additional parameters

depending on whether both marginal models are additive, one is additive and

one general, or both general.

Software. Several software packages were developedwithin theWTCCC for data

analysis, data management and simulation studies. We found it necessary to

normalize the Affymetrix probe intensity data to minimize chip-to-chip vari-

ability. A C11 program was written to carry out this normalization efficiently.

To obtain a copy of the software please email Hin-Tak Leung at hin-tak.leung@

cimr.cam.ac.uk.

We developed a new genotype calling algorithm, CHIAMO, implemented

in C11. CHIAMO uses a hierarchical statistical model, which allows it to

simultaneously call genotypes at all data samples. To obtain a copy of the soft-

ware please email J. L. Marchini at marchini@stats.ox.ac.uk.
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To perform genome-wide association analysis we developed two software
packages: snpMatrix and SNPTEST. snpMatrix is an R package and is freely

available from http://www-gene.cimr.cam.ac.uk/clayton/software/. Both quant-

itative and qualitative phenotypes can by analysed using snpMatrix and flexible

association testing functions are provided that control for potential confounding

by quantitative and qualitative covariates. SNPTEST is a standalone C11 pro-

gram that implements both frequentist tests and bayesian analysis of association

and allows the user to include quantitative or qualitative covariates. This program

works directlywith the outputofCHIAMOand IMPUTE (see below). Toobtain a

copy of the software please email J. L. Marchini at marchini@stats.ox.ac.uk.

Genotypes at SNPs that are in HapMap but not on the Affymetrix 500K chip

were imputed using the C11 program IMPUTE, which makes use of genotype

information at neighbouring SNPs. To obtain a copy of the software please email

J. L. Marchini at marchini@stats.ox.ac.uk.
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