Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Superconductivity in doped cubic silicon

Abstract

Although the local resistivity of semiconducting silicon in its standard crystalline form can be changed by many orders of magnitude by doping with elements, superconductivity has so far never been achieved. Hybrid devices combining silicon’s semiconducting properties and superconductivity have therefore remained largely underdeveloped. Here we report that superconductivity can be induced when boron is locally introduced into silicon at concentrations above its equilibrium solubility. For sufficiently high boron doping (typically 100 p.p.m.) silicon becomes metallic1. We find that at a higher boron concentration of several per cent, achieved by gas immersion laser doping, silicon becomes superconducting. Electrical resistivity and magnetic susceptibility measurements show that boron-doped silicon (Si:B) made in this way is a superconductor below a transition temperature Tc ≈ 0.35 K, with a critical field of about 0.4 T. Ab initio calculations, corroborated by Raman measurements, strongly suggest that doping is substitutional. The calculated electron–phonon coupling strength is found to be consistent with a conventional phonon-mediated coupling mechanism2. Our findings will facilitate the fabrication of new silicon-based superconducting nanostructures and mesoscopic devices with high-quality interfaces.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: High-resolution XRD measurements of three Si:B superconducting samples, and diagrams showing three steps of the GILD process.
Figure 2: Temperature dependence of the a.c. resistivity, ρ.
Figure 3: Superconducting transition and magnetic phase diagram of B-doped Si (sample 1).
Figure 4: Calculated and experimental vibrational spectral density of B:Si.

Similar content being viewed by others

References

  1. Dai, P., Zhang, Y. & Sarachik, M. P. Critical conductivity exponent for Si:B. Phys. Rev. Lett. 66, 1914–1917 (1991)

    Article  ADS  CAS  Google Scholar 

  2. Bardeen, J., Cooper, L. N. & Schrieffer, J. R. Theory of superconductivity. Phys. Rev. 108, 1175–1204 (1957)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  3. Hein, R. A., Gibson, J. W., Mazelsky, R., Miller, R. C. & Hulm, J. K. Superconductivity in germanium telluride. Phys. Rev. Lett. 12, 320–322 (1964)

    Article  ADS  CAS  Google Scholar 

  4. Schooley, J. F. et al. Dependence of the superconducting transition temperature on carrier concentration in semiconducting SrTiO3 . Phys. Rev. Lett. 14, 305–307 (1965)

    Article  ADS  CAS  Google Scholar 

  5. Lasbley, A., Granger, R. & Rolland, S. High temperature superconducting behaviour in PbTe-Pb system. Solid State Commun. 13, 1045–1048 (1973)

    Article  ADS  CAS  Google Scholar 

  6. Alekseyevsky, N. & Migunov, L. Investigation of metals at temperatures below 1°K. J. Phys. (USSR) 11, 95 (1947)

    Google Scholar 

  7. Buckel, W. & Wittig, J. Supraleitung von Germanium und Silizium unter hohem Druck. Phys. Lett. 17, 187–188 (1965)

    Article  ADS  CAS  Google Scholar 

  8. Stepanov, G. N., Valyanskaya, T. V. & Yakovlev, E. N. Superconductivity of metallic silicon below the pressure of transition to metallic modification. Sov. Phys. Solid State 22, 292–293 (1980)

    Google Scholar 

  9. Chang, K. J. et al. Superconductivity in high-pressure metallic phases of Si. Phys. Rev. Lett. 54, 2375–2378 (1985)

    Article  ADS  CAS  Google Scholar 

  10. Cohen, M. L. Superconductivity in many-valley semiconductors and in semimetals. Phys. Rev. 134, A511–A521 (1964)

    Article  ADS  Google Scholar 

  11. Connétable, D. et al. Superconductivity in doped sp3 semiconductors: The case of the clathrates. Phys. Rev. Lett. 91, 247001 (2003)

    Article  ADS  Google Scholar 

  12. Boeri, L., Kortus, J. & Andersen, O. K. Three-dimensional MgB2-type superconductivity in hole-doped diamond. Phys. Rev. Lett. 93, 237002 (2004)

    Article  ADS  Google Scholar 

  13. Kawaji, H., Horie, H., Yamanaka, S. & Ishikawa, M. Superconductivity in the silicon clathrate compound (Na,Ba)xSi46 . Phys. Rev. Lett. 74, 1427–1429 (1995)

    Article  ADS  CAS  Google Scholar 

  14. Ekimov, E. A. et al. Superconductivity in diamond. Nature 428, 542–545 (2004)

    Article  ADS  CAS  Google Scholar 

  15. Yokoya, T. et al. Origin of the metallic properties of heavily boron-doped superconducting diamond. Nature 438, 647–650 (2005)

    Article  ADS  CAS  Google Scholar 

  16. Sacépé, B. et al. Tunneling spectroscopy and vortex imaging in boron-doped diamond. Phys. Rev. Lett. 96, 097006 (2006)

    Article  ADS  Google Scholar 

  17. Kerrien, G. et al. Ultra-shallow, super-doped and box-like junctions realized by laser-induced doping. Appl. Surf. Sci. 186, 45–51 (2002)

    Article  ADS  CAS  Google Scholar 

  18. Kerrien, G. et al. Gas immersion laser doping (GILD) for ultra-shallow junction formation. Thin Solid Films 453–454, 106–109 (2004)

    Article  ADS  Google Scholar 

  19. Kerrien, G. et al. Optical characterization of laser-processed ultrashallow junctions. Appl. Surf. Sci. 208–209, 277–284 (2003)

    Article  ADS  Google Scholar 

  20. Vailionis, A., Glass, G., Desjardins, P., Cahill, D. G. & Greene, J. E. Electrically active and inactive B lattice sites in ultrahighly B doped Si(001): An X-ray near-edge absorption fine-structure and high-resolution diffraction study. Phys. Rev. Lett. 82, 4464–4467 (1999)

    Article  ADS  CAS  Google Scholar 

  21. Eremets, M. I., Struzhkin, V. V., Mao, H.-k. & Hemley, R. J. Superconductivity in boron. Science 293, 272–274 (2001)

    Article  ADS  CAS  Google Scholar 

  22. Tinkham, M. in Inhomogeneous Superconductors-1979 (eds Gubser, D. U., Francavilla, T. L., Laibowitz, J. R. & Wolf, S. A.) 1–12 (AIP Conf. Proc. Vol. 58, American Institute of Physics, 1980)

    Google Scholar 

  23. Werthamer, N. R., Helfand, E. & Hohenberg, P. C. Temperature and purity dependence of the superconducting critical field Hc2, III. Electron spin and spin-orbit effects. Phys. Rev. 147, 295–302 (1966)

    Article  ADS  CAS  Google Scholar 

  24. Ting, C. S., Lee, T. K. & Quinn, J. J. Effective mass and g factor of interacting electrons in the surface inversion layer of silicon. Phys. Rev. Lett. 34, 870–874 (1975)

    Article  ADS  CAS  Google Scholar 

  25. Kent, A. D., Kapitulnik, A. & Geballe, T. H. Hc2 spectroscopy of geometrical effects in La-S Films. Phys. Rev. B 36, 8827–8830 (1987)

    Article  ADS  CAS  Google Scholar 

  26. Quateman, J. H. Tc suppression and critical fields in thin superconducting Nb films. Phys. Rev. B 34, 1948–1951 (1986)

    Article  ADS  CAS  Google Scholar 

  27. Guyon, E., Meunier, F. & Thomson, R. S. Thickness dependence of κ2 and related problems for superconducting alloy films in strong fields. Phys. Rev. 156, 452–469 (1967)

    Article  ADS  CAS  Google Scholar 

  28. Blase, X., Adessi & Connétable, D. Role of the dopant in the superconductivity of diamond. Phys. Rev. Lett. 93, 237004 (2004)

    Article  ADS  CAS  Google Scholar 

  29. Lee, K.-W. & Pickett, W. E. Superconductivity in boron-doped diamond. Phys. Rev. Lett. 93, 237003 (2004)

    Article  ADS  Google Scholar 

  30. Bustarret, E. et al. Dependence of the superconducting transition temperature on the doping level in single-crystalline diamond films. Phys. Rev. Lett. 93, 237005 (2004)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge J. Marcus, M. Sanquer and X. Jehl for access to their cryostats, as well as J. Pernot for discussions. Calculations were performed at the CNRS national supercomputing centre (IDRIS). Partial funding by the French ANR-05-BLAN programme is acknowledged. Author Contributions The samples were prepared by D.D. and J.B., and the calculations performed by E.Bo. and X.B. All other authors contributed to the physical characterization of the samples.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. Bustarret or C. Marcenat.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bustarret, E., Marcenat, C., Achatz, P. et al. Superconductivity in doped cubic silicon. Nature 444, 465–468 (2006). https://doi.org/10.1038/nature05340

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05340

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing