Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Bistability of atmospheric oxygen and the Great Oxidation

Abstract

The history of the Earth has been characterized by a series of major transitions separated by long periods of relative stability1. The largest chemical transition was the ‘Great Oxidation’, approximately 2.4 billion years ago, when atmospheric oxygen concentrations rose from less than 10-5 of the present atmospheric level (PAL) to more than 0.01 PAL, and possibly2 to more than 0.1 PAL. This transition took place long after oxygenic photosynthesis is thought to have evolved3,4,5, but the causes of this delay and of the Great Oxidation itself remain uncertain6,7,8,9,10,11. Here we show that the origin of oxygenic photosynthesis gave rise to two simultaneously stable steady states for atmospheric oxygen. The existence of a low-oxygen (less than 10-5 PAL) steady state explains how a reducing atmosphere persisted for at least 300 million years after the onset of oxygenic photosynthesis. The Great Oxidation can be understood as a switch to the high-oxygen (more than 5 × 10-3 PAL) steady state. The bistability arises because ultraviolet shielding of the troposphere by ozone becomes effective once oxygen levels exceed 10-5 PAL, causing a nonlinear increase in the lifetime of atmospheric oxygen. Our results indicate that the existence of oxygenic photosynthesis is not a sufficient condition for either an oxygen-rich atmosphere or the presence of an ozone layer, which has implications for detecting life on other planets using atmospheric analysis12,13 and for the evolution of multicellular life.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Model schematic.
Figure 2: Steady-state solutions for oxygen.
Figure 3: Transient response to step changes at 2.4 Gyr ago representing possible triggers of the Great Oxidation.

Similar content being viewed by others

References

  1. Lenton, T., Caldeira, K. & Szathmáry, E. in Earth Systems Analysis Sustainability (eds Schellnhuber, H., Crutzen, P., Clark, W., Claussen, M. & Held, H.) 29–52 (Dahlem Workshop Reports, Vol. 91, MIT Press, Cambridge, Massachusetts, 2004)

    Google Scholar 

  2. Holland, H. D. The oxygenation of the atmosphere and oceans. Phil. Trans. Soc. B 361, 903–916 (2006)

    Article  CAS  Google Scholar 

  3. Brocks, J. J., Logan, G. A., Buick, R. & Summons, R. Archean molecular fossils and the early rise of eukaryotes. Science 285, 1033–1036 (1999)

    Article  CAS  Google Scholar 

  4. Summons, R. E., Jahnke, L. L., Hope, J. M. & Logan, G. A. 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature 400, 554–557 (1999)

    Article  ADS  CAS  Google Scholar 

  5. Brocks, J. J., Buick, R., Summons, R. E. & Logan, G. A. A reconstruction of Archean biological diversity based on molecular fossils from the 2.78 to 2.45 billion-year-old Mount Bruce Supergroup, Hamersley Basin, Western Australia. Geochim. Cosmochim. Acta 67, 4321–4335 (2003)

    Article  ADS  CAS  Google Scholar 

  6. Holland, H. D. Volcanic gases, black smokers, and the great oxidation event. Geochim. Cosmochim. Acta 66, 3811–3826 (2002)

    Article  ADS  CAS  Google Scholar 

  7. Barley, M. E., Bekker, A. & Krapež, B. Late Archean to early Paleoproterozoic global tectonics, environmental change and the rise of atmospheric oxygen. Earth Planet. Sci. Lett. 238, 156–171 (2005)

    Article  ADS  CAS  Google Scholar 

  8. Kump, L. R., Kasting, J. F. & Barley, M. E. Rise of atmospheric oxygen and the “upside-down” Archean mantle. Geochem. Geophys. Geosyst. 2, doi:10.1029/2000GC000114 (2001)

  9. Kasting, J. F. The rise of atmospheric oxygen. Science 293, 819–820 (2001)

    Article  CAS  Google Scholar 

  10. Catling, D., Zahnle, K. & McKay, C. Biogenic methane, hydrogen escape, and the irreversible oxidation of early Earth. Science 293, 839–843 (2001)

    Article  ADS  CAS  Google Scholar 

  11. Catling, D. C. & Claire, M. W. How Earth's atmosphere evolved to an oxic state: a status report. Earth Planet. Sci. Lett. 237, 1–20 (2005)

    Article  ADS  CAS  Google Scholar 

  12. Lovelock, J. A physical basis for life detection experiments. Nature 207, 568–570 (1965)

    Article  ADS  CAS  Google Scholar 

  13. Hitchcock, D. & Lovelock, J. Life detection by atmospheric analysis. Icarus 7, 149–159 (1967)

    Article  ADS  Google Scholar 

  14. Kasting, J. F., Liu, S. C. & Donahue, T. M. Oxygen levels in the prebiological atmosphere. J. Geophys. Res. 84, 3097–3107 (1979)

    Article  ADS  CAS  Google Scholar 

  15. Farquhar, J., Bao, H. & Thiemens, M. Atmospheric influence of Earth's earliest sulfur cycle. Science 289, 757–758 (2000)

    Article  ADS  Google Scholar 

  16. Pavlov, A. & Kasting, J. Mass-independent fractionation of sulfur isotopes in Archean sediments: strong evidence for an anoxic Archean atmosphere. Astrobiology 2, 27–41 (2002)

    Article  ADS  CAS  Google Scholar 

  17. Bekker, A. et al. Dating the rise of atmospheric oxygen. Nature 427, 117–120 (2004)

    Article  ADS  CAS  Google Scholar 

  18. Kopp, R. E., Kirschvink, J. L., Hilburn, I. A. & Nash, C. Z. The paleoproterozoic snowball Earth: A climate disaster triggered by the evolution of oxygenic photosynthesis. Proc. Natl Acad. Sci. USA 32, 11131–11136 (2005)

    Article  ADS  Google Scholar 

  19. Li, Z.-X. A. & Lee, C.-T. A. The constancy of upper mantle fO2 through time inferred from V/Sc ratios in basalts. Earth Planet. Sci. Lett. 228, 483–493 (2004)

    Article  ADS  CAS  Google Scholar 

  20. Pavlov, A., Brown, L. & Kasting, J. UV shielding of NH3 and O2 by organic hazes in the Archean atmosphere. J. Geophys. Res. 106, 23267–23287 (2001)

    Article  ADS  CAS  Google Scholar 

  21. Pavlov, A., Hurtgen, M., Kasting, J. & Arthur, M. Methane-rich Proterozoic atmosphere? Geology 31, 87–90 (2003)

    Article  ADS  CAS  Google Scholar 

  22. Kasting, J. & Donahue, T. The evolution of the atmospheric ozone. J. Geophys. Res. 85, 3255–3263 (1980)

    Article  ADS  CAS  Google Scholar 

  23. Isley, A. E. & Abbott, D. H. Plume-related mafic volcanism and the deposition of banded iron formation. J. Geophys. Res. 104, 15461–15477 (1999)

    Article  ADS  CAS  Google Scholar 

  24. Shields, G. & Veizer, J. Precambrian marine carbonate isotope database: version 1.1. Geochem. Geophys. Geosyst. 3, doi:10.1029/2001GC000266 (2002)

  25. Pavlov, A. A., Kasting, J. F., Brown, L. L., Rages, K. A. & Freedman, R. Greenhouse warming by CH4 in the atmosphere of early Earth. J. Geophys. Res. 105, 11981–11990 (2000)

    Article  ADS  CAS  Google Scholar 

  26. Kasting, J. F. Methane and climate during the precambrian era. Precambrian Res. 137, 119–129 (2005)

    Article  ADS  CAS  Google Scholar 

  27. Kharecha, P., Kasting, J. F. & Siefert, J. L. A coupled atmosphere-ecosystem model of the early Archean Earth. Geobiology 3, 53–76 (2005)

    Article  CAS  Google Scholar 

  28. Ren, T., Amaral, J. A. & Knowles, R. The response of methane consumption by pure cultures of methanotropic bacteria to oxygen. Can. J. Microbiol. 43, 925–928 (1997)

    Article  CAS  Google Scholar 

  29. Holland, H. D. Discussion of the article by A. C. Lasaga and H. Ohmoto on “The oxygen geochemical cycle: dynamics and stability”, Geochim. Cosmochim. Acta 66, 361–381, 2002. Geochim. Cosmochim. Acta 67, 787–789 (2003)

    Article  ADS  CAS  Google Scholar 

  30. Hayes, J. M. & Waldbauer, J. R. The carbon cycle and associated redox processed through time. Phil. Trans. R. Soc. B 361, 931–950 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

C.G. is funded by the Natural Environment Research Council. T.M.L. is supported by a Leverhulme Prize. We thank J. Kasting and L. Kump for comments on the manuscript. C.G. thanks J. Meiss for teaching dynamical systems. Author Contributions T.M.L. and A.J.W suggested the study. C.G. wrote and analysed the model with supervision from T.M.L. and A.J.W., and led writing the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colin Goldblatt.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Notes

This file contains Supplementary Figures and Supplementary Discussion. This includes details on compilation of proxy data for palaeo-oxygen; full model derivation; and temperature difference calculations. (PDF 162 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldblatt, C., Lenton, T. & Watson, A. Bistability of atmospheric oxygen and the Great Oxidation. Nature 443, 683–686 (2006). https://doi.org/10.1038/nature05169

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05169

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing