Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The removal of cusps from galaxy centres by stellar feedback in the early Universe

Abstract

The standard cosmological model, now strongly constrained by direct observations of the Universe at early epochs, is very successful in describing the evolution of structure on large and intermediate scales1. Unfortunately, serious contradictions remain on smaller, galactic scales1,2. Among the main small-scale problems is a significant and persistent discrepancy between observations of nearby galaxies, which imply that galactic dark matter haloes have a density profile with a flat core3,4,5,6, and the cosmological model, which predicts that the haloes should have divergent density (a cusp) at the centre7,8. Here we report numerical simulations that show that random bulk motions of gas in small primordial galaxies, of the magnitude expected in these systems, will result in a flattening of the central dark matter cusp on relatively short timescales (108 years). Gas bulk motions in early galaxies are driven by supernova explosions that result from ongoing star formation. Our mechanism is general, and would have operated in all star-forming galaxies at redshifts z ≥ 10. Once removed, the cusp cannot be reintroduced during the subsequent mergers involved in the build-up of larger galaxies9,10. As a consequence, in the present Universe both small and large galaxies would have flat dark matter core density profiles, in agreement with observations.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Evolution of the dark matter density profile in the fiducial model.
Figure 2: Degree of flattening of the central dark matter cusp for different models.

Similar content being viewed by others

References

  1. Coles, P. The state of the Universe. Nature 433, 248–256 (2005)

    Article  ADS  CAS  Google Scholar 

  2. Tasitsiomi, A. The state of the cold dark matter models on galactic and subgalactic scales. Int. J. Mod. Phys. D 12, 1157–1196 (2003)

    Article  ADS  Google Scholar 

  3. Burkert, A. The structure of dark matter halos in dwarf galaxies. Astrophys. J. 447, L25–L28 (1995)

    Article  ADS  Google Scholar 

  4. de Blok, W. J. G. & Bosma, A. High-resolution rotation curves of low surface brightness galaxies. Astron. Astrophys. 385, 816–846 (2002)

    Article  ADS  Google Scholar 

  5. Gentile, G., Burkert, A., Salucci, P., Klein, U. & Walter, F. The dwarf galaxy DDO 47 as a dark matter laboratory: testing cusps hiding in triaxial halos. Astrophys. J. 634, L145–L148 (2005)

    Article  ADS  Google Scholar 

  6. de Blok, W. J. G. Halo mass profiles and low surface brightness galaxy rotation curves. Astrophys. J. 634, 227–238 (2005)

    Article  ADS  Google Scholar 

  7. Navarro, J. F., Frenk, C. S. & White, S. D. M. A universal density profile from hierarchical clustering. Astrophys. J. 490, 493–508 (1997)

    Article  ADS  Google Scholar 

  8. Navarro, J. F. et al. The inner structure of ΛCDM haloes—III. Universality and asymptotic slopes. Mon. Not. R. Astron. Soc. 349, 1039–1051 (2004)

    Article  ADS  CAS  Google Scholar 

  9. Dehnen, W. Phase-space mixing and the merging of cusps. Mon. Not. R. Astron. Soc. 360, 892–900 (2005)

    Article  ADS  CAS  Google Scholar 

  10. Kazantzidis, S., Zentner, A. R. & Kravtsov, A. V. The robustness of dark matter density profiles in dissipationless mergers. Astrophys. J. 641, 647–664 (2006)

    Article  ADS  Google Scholar 

  11. Spergel, D. N. et al. First-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: determination of cosmological parameters. Astrophys. J. Suppl. 148, 175–194 (2003)

    Article  ADS  Google Scholar 

  12. Sánchez-Salcedo, F. J. The dark halo of NGC 5963 as a constraint on dark matter self-interaction at the low-velocity regime. Astrophys. J. 631, 244–251 (2005)

    Article  ADS  Google Scholar 

  13. Weinberg, M. D. & Katz, N. Bar-driven dark halo evolution: a resolution of the cusp-core controversy. Astrophys. J. 580, 627–633 (2002)

    Article  ADS  Google Scholar 

  14. El-Zant, A., Shlosman, I. & Hoffman, Y. Dark halos: the flattening of the density cusp by dynamical friction. Astrophys. J. 560, 636–643 (2001)

    Article  ADS  Google Scholar 

  15. Merritt, D., Milosavljević, M., Favata, M., Hughes, S. A. & Holz, D. E. Consequences of gravitational radiation recoil. Astrophys. J. 607, L9–L12 (2004)

    Article  ADS  CAS  Google Scholar 

  16. Gnedin, O. Y. & Zhao, H. Maximum feedback and dark matter profiles of dwarf galaxies. Mon. Not. R. Astron. Soc. 333, 299–306 (2002)

    Article  ADS  Google Scholar 

  17. Brinks, E. & Bajaja, E. A high resolution hydrogen-line survey of Messier 31. III–H i holes in the interstellar medium. Astron. Astrophys. 169, 14–42 (1986)

    ADS  CAS  Google Scholar 

  18. Deul, E. R. & van der Hulst, J. M. A survey of the neutral atomic hydrogen in M33. Astron. Astrophys. Suppl. 67, 509–539 (1987)

    ADS  CAS  Google Scholar 

  19. Young, L. M. & Lo, K. Y. The neutral interstellar medium in nearby dwarf galaxies III. Sagittarius DIG, LGS 3, and Phoenix. Astrophys. J. 490, 710–728 (1997)

    Article  ADS  CAS  Google Scholar 

  20. Kim, S. et al. An H i aperture synthesis mosaic of the Large Magellanic Cloud. Astrophys. J. 503, 674–688 (1998)

    Article  ADS  CAS  Google Scholar 

  21. Begum, A. & Chengalur, J. N. Kinematics of the dwarf irregular galaxy GR8. Astron. Astrophys. 409, 879–886 (2003)

    Article  ADS  Google Scholar 

  22. Pelupessy, F. I., van der Werf, P. P. & Icke, V. Periodic bursts of star formation in irregular galaxies. Astron. Astrophys. 422, 55–64 (2004)

    Article  ADS  CAS  Google Scholar 

  23. Slyz, A. D., Devriendt, J. E. G., Bryan, G. & Silk, J. Towards simulating star formation in the interstellar medium. Mon. Not. R. Astron. Soc. 356, 737–752 (2005)

    Article  ADS  CAS  Google Scholar 

  24. de Avillez, M. A. & Breitschwerdt, D. Global dynamical evolution of the ISM in star forming galaxies. I. High resolution 3D simulations: Effect of the magnetic field. Astron. Astrophys. 436, 585–600 (2005)

    Article  ADS  CAS  Google Scholar 

  25. Lynden-Bell, D. Statistical mechanics of violent relaxation in stellar systems. Mon. Not. R. Astron. Soc. 136, 101–121 (1967)

    Article  ADS  Google Scholar 

  26. Mac Low, M.-M. & Ferrara, A. Starburst-driven mass loss from dwarf galaxies: efficiency and metal ejection. Astrophys. J. 513, 142–155 (1999)

    Article  ADS  Google Scholar 

  27. Moore, B. et al. Dark matter substructure within galactic halos. Astrophys. J. 524, L19–L22 (1999)

    Article  ADS  CAS  Google Scholar 

  28. Mashchenko, S. & Sills, A. Globular clusters with dark matter halos. II. Evolution in a tidal field. Astrophys. J. 619, 258–269 (2005)

    Article  ADS  Google Scholar 

  29. Springel, V., Yoshida, N. & White, S. D. M. GADGET: a code for collisionless and gasdynamical cosmological simulations. New Astron. 6, 79–117 (2001)

    Article  ADS  CAS  Google Scholar 

  30. Bromm, V. & Clarke, C. J. The formation of the first globular clusters in dwarf galaxies before the epoch of reionization. Astrophys. J. 566, L1–L4 (2002)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The simulations reported in this Letter were carried out on the McKenzie cluster at the Canadian Institute for Theoretical Astrophysics. H.M.P.C. is grateful for support from the Canadian Institute for Advanced Research, NSERC and SHARCNET. J.W. acknowledges support from NSERC.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mashchenko, S., Couchman, H. & Wadsley, J. The removal of cusps from galaxy centres by stellar feedback in the early Universe. Nature 442, 539–542 (2006). https://doi.org/10.1038/nature04944

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04944

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing