Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Stem-cell therapies for blood diseases

Abstract

For decades, transplantation of haematopoietic stem cells — either unmodified, or genetically modified to correct genetic disorders — has been used to treat disorders of the blood and immune systems. The present challenge is to reduce the risk of such transplants and increase the number of patients who can safely access this treatment. In developing countries, such ‘one-shot’ treatments are highly desirable because chronic treatments are difficult to sustain. To make these therapies more accessible and effective it will be important to improve clinical protocols and gene-delivery vectors, and to gain a deeper understanding of stem cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Large-scale HS-cell therapy across the world.

Similar content being viewed by others

References

  1. Thomas, E. D., Lochte, H. L., Lu, W. C. & Ferrebee, J. W. Intravenous infusion of bone marrow in patients receiving radiation and chemotherapy. N. Engl. J. Med. 12, 491–496 (1957).

    Article  Google Scholar 

  2. Gatti, R. A., Meuwissen, H. J., Allen, H. D., Hong, R. & Good, R. A. Immunological reconstitution of sex-linked lymphopenic immunological deficiency. Lancet 292, 1366–1369 (1968).

    Article  Google Scholar 

  3. Spangrude, G. J., Heimfeld, S. & Weissman, I. L. Purification and characterization of mouse hematopoietic stem cells. Science 241, 58–62 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Thomas, E. D. Bone marrow transplantation — past, present and future (Nobel Lecture, December 8, 1990).

  5. Reisner, Y. et al. Transplantation for severe combined immunodeficiency with HLA-A,B,D,DR incompatible parental marrow cells fractionated by soybean agglutinin and sheep red blood cells. Blood 61, 341–348 (1983).

    CAS  PubMed  Google Scholar 

  6. O'Reilly, R. J., Keever, C. A., Small, T. N. & Brochstein J. The use of HLA-non-identical T-cell-depleted marrow transplants for correction of severe combined immunodeficiency disease. Immunodefic. Rev. 1, 273–309 (1989).

    CAS  PubMed  Google Scholar 

  7. Corti, P. et al. Reconstitution of lymphocyte subpopulations in children with inherited metabolic storage diseases after haematopoietic cell transplantation. Br. J. Haematol. 130, 249–255 (2005).

    Article  PubMed  Google Scholar 

  8. Lucarelli, G., Andreani, M. & Angelucci, E. The cure of thalassemia by bone marrow transplantation. Blood Rev. 16, 81–85 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Boulad, F. et al. Stem cell transplantation for the treatment of Fanconi anaemia using a fludarabine-based cytoreductive regimen and T-cell-depleted related HLA-mismatched peripheral blood stem cell grafts. Br. J. Haematol. 111, 1153–1157 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Thomas, E. D., Lochte, H. L., Cannon, J. H., Sahler, O. D. & Ferrebee J. W. Supralethal whole body irradiation and isologous marrow transplantation in man. J. Clin. Invest. 38, 1709–1716 (1959).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Aversa, F. et al. Treatment of high risk acute leukemia with T-cell-depleted stem cells from related donors with one fully mismatched HLA haplotype. N. Engl. J. Med. 339, 1186–1193 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Gregori, S., Bacchetta, R., Hauben, E., Battaglia, M. & Roncarolo, M. G. Regulatory T cells: prospective for clinical application in hematopoietic stem cell transplantation. Curr. Opin. Hematol. 12, 451–456 (2005).

    Article  PubMed  Google Scholar 

  13. Bonini, C. et al. HSV-TK gene transfer into donor lymphocytes for control of allogeneic graft-versus-leukemia. Science 276, 1719–1724 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Bordignon, C. et al. Gene therapy in peripheral blood lymphocytes and bone marrow for ADA-immunodeficient patients. Science 270, 470–475 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Cavazzana-Calvo, M. et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 28, 669–672 (2000).

    Article  ADS  Google Scholar 

  16. Aiuti, A. et al. Correction of ADA-SCID by stem cell gene therapy combined with a non-myeloablative conditioning. Science 296, 2410–2413 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Ott, M. G. et al. Correction of chronic granulomatous disease by gene therapy augmented by insertional activation of MDS1-EVI1, PRDM16 or SETBP1. Nature Med. 12, 401–409 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Sadelain, M. et al. Progress toward the genetic treatment of the β-thalassemias. Ann. NY Acad. Sci. 1054, 78–91 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Hacein-Bey-Abina, S. et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 17, 415–419 (2003).

    Article  ADS  Google Scholar 

  20. Fischer, A., Abina, S. H., Thrasher, A., Von Kalle, C. & Cavazzana-Calvo, M. LMO2 and gene therapy for severe combined immunodeficiency. N. Engl. J. Med. 350, 2526–2527 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Gaspar, H. B. et al. Gene therapy of X-linked severe combined immunodeficiency by use of a pseudotyped γretroviral vector. Lancet 364, 2181–2187 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Biffi, A. et al. Correction of metachromatic leukodystrophy in the mouse model by transplantation of genetically modified hematopoietic stem cells. J. Clin. Invest. 113, 1118–1129 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ferrari, G. et al. Muscle regeneration by bone marrow-derived myogenic progenitors. Science 6, 1528–1530 (1998).

    Article  ADS  Google Scholar 

  24. Grompe, M. Bone marrow-derived hepatocytes. Novartis Found. Symp. 265, 20–27 (2005).

    PubMed  Google Scholar 

  25. Nadal-Ginard, B., Anversa, P., Kajstura, J. & Leri, A. Cardiac stem cells and myocardial regeneration. Novartis Found. Symp. 265, 142–154 (2005).

    PubMed  Google Scholar 

  26. De Palma, M., Venneri, M. A., Roca, C. & Naldini, L. Targeting exogenous genes to tumor angiogenesis by transplantation of genetically modified hematopoietic stem cells. Nature Med. 9, 789–795 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author is indebted to L. Reiss and M. Cassin for the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

Claudio Bordignon acts as a consultant for MolMed SpA.

Additional information

Author Information Reprints and permissions information is available at npg.nature.com/reprintsandpermissions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bordignon, C. Stem-cell therapies for blood diseases. Nature 441, 1100–1102 (2006). https://doi.org/10.1038/nature04962

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04962

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing