Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ultrafast superheating and melting of bulk ice

Abstract

The superheating of a solid to a temperature beyond its melting point, without the solid actually melting, is a well-known phenomenon. It occurs with many substances1,2,3,4,5, particularly those that can readily be produced as high-quality crystals. In principle, ice should also be amenable to superheating. But the complex three-dimensional network of hydrogen bonds that holds water molecules together and gives rise to unusual solid and liquid properties6,7,8,9,10,11 strongly affects the melting behaviour of ice12,13,14; in particular, ice usually contains many defects owing to the directionality of its hydrogen bonds. However, simulations are readily able to ‘create’ defect-free ice that can be superheated15,16. Here we show that by exciting the OH stretching mode of water, it is possible to superheat ice. When using an ice sample at an initial temperature of 270 K, we observe an average temperature rise of 20 ± 2 K that persists over the monitored time interval of 250 ps without melting.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Conventional infrared absorption spectra of HDO:D 2 O (15 M).
Figure 2: Ultrafast heating of HDO:D 2 O ice from 200 K to 220 K.
Figure 3: Superheating of HDO:D 2 O ice from 270 K to 290 K.
Figure 4: Superheating and (partial) melting of ice.

Similar content being viewed by others

References

  1. Luo, S. N. et al. Maximum superheating and undercooling: systematics, molecular dynamics simulations, and dynamic experiments. Phys. Rev. B 68, 134206 (2003)

    Article  ADS  Google Scholar 

  2. Luo, S. N. & Ahrens, T. J. Shock-induced superheating and melting curves of geophysically important minerals. Phys. Earth Planet. Inter. 143–144, 369–386 (2004)

    Article  ADS  Google Scholar 

  3. Huang, K. C., Wang, T. & Joannopoulos, J. D. Superheating and induced melting at semiconductor interface. Phys. Rev. Lett. 94, 175702 (2005)

    Article  ADS  Google Scholar 

  4. Jin, Z. H., Gumbsch, P., Lu, K. & Ma, E. Melting mechanisms at the limit of superheating. Phys. Rev. Lett. 87, 055703 (2001)

    Article  CAS  ADS  Google Scholar 

  5. Cahn, R. W. Melting and the surface. Nature 323, 668–669 (1986)

    Article  ADS  Google Scholar 

  6. Mishima, O. & Stanley, H. E. The relationship between liquid, supercooled and glassy water. Nature 396, 329–335 (1998)

    Article  CAS  ADS  Google Scholar 

  7. Wernet, Ph. et al. The structure of the first coordination shell in liquid water. Science 304, 995–999 (2004)

    Article  CAS  ADS  Google Scholar 

  8. Torre, R., Bartolini, P. & Righini, R. Structural relaxation in supercooled water by time-resolved spectroscopy. Nature 428, 296–298 (2004)

    Article  CAS  ADS  Google Scholar 

  9. Ludwig, R. Water: from clusters to the bulk. Angew. Chem. Int. Edn Engl. 40, 1808–1827 (2001)

    Article  CAS  Google Scholar 

  10. Tse, J. S. et al. The mechanisms for pressure-induced amorphization of ice Ih . Nature 400, 647–649 (1999)

    Article  CAS  ADS  Google Scholar 

  11. Tulk, C. A. et al. Structural studies of several distinct metastable forms of amorphous ice. Science 297, 1320–1323 (2002)

    Article  CAS  ADS  Google Scholar 

  12. Mishima, O., Calvert, L. D. & Whalley, E. ‘Melting ice’ I at 77 K and 10 kbar: a new method of making amorphous solids. Nature 310, 393–395 (1984)

    Article  CAS  ADS  Google Scholar 

  13. Engemann, S. et al. Interfacial melting of ice in contact with SiO2 . Phys. Rev. Lett. 92, 205701 (2004)

    Article  CAS  ADS  Google Scholar 

  14. Ruan, Ch.-Y., Lobastov, V. A., Vigliotti, F., Chen, S. & Zewail, A. H. Ultrafast electron crystallography of interfacial water. Science 304, 80–84 (2004)

    Article  CAS  ADS  Google Scholar 

  15. Luo, S. N., Strachan, A. & Swift, D. C. Deducing solid-liquid interfacial energy from superheating or supercooling: application to H2O at high pressures. Model. Simul. Mater. Sci. Eng. 13, 321–328 (2005)

    Article  CAS  ADS  Google Scholar 

  16. McBride, C., Vega, C., Sanz, E., MacDowell, L. G. & Abascal, J. L. F. The range of metastability of ice-water melting for two simple models of water. Mol. Phys. 103, 1–5 (2005)

    Article  CAS  ADS  Google Scholar 

  17. Laenen, R., Simeonidis, K. & Laubereau, A. Generation of sub-ps IR pulses via parametric processes and application to transient spectroscopy of molecules. Laser Phys. 9, 234–238 (1999)

    CAS  Google Scholar 

  18. Woutersen, S., Emmerichs, U., Nienhuys, H. K. & Bakker, H. J. Anomalous temperature dependence of vibrational lifetimes in water and ice. Phys. Rev. Lett. 81, 1106–1109 (1998)

    Article  CAS  ADS  Google Scholar 

  19. Graener, H., Seifert, G. & Laubereau, A. New spectroscopy of water using tunable picosecond pulses in the infrared. Phys. Rev. Lett. 66, 2092–2095 (1991)

    Article  CAS  ADS  Google Scholar 

  20. Laenen, R., Rauscher, C. & Laubereau, A. Dynamics of local substructures in water observed by ultrafast infrared hole burning. Phys. Rev. Lett. 80, 2622–2625 (1998)

    Article  CAS  ADS  Google Scholar 

  21. Woutersen, S., Emmerichs, U. & Bakker, H. J. Femtosecond Mid-IR pump-probe spectroscopy of liquid water: evidence for a two-component structure. Science 278, 658–660 (1997)

    Article  CAS  ADS  Google Scholar 

  22. Fecht, H. J. Defect-induced melting and solid-state amorphization. Nature 356, 133–135 (1992)

    Article  CAS  ADS  Google Scholar 

  23. Górecki, T. Comments on vacancies and melting. Scr. Metall. 11, 1051–1053 (1977)

    Article  Google Scholar 

  24. Grishina, N. & Buch, V. Structure and dynamics of orientational defects on ice I. J. Chem. Phys. 120, 5217–5225 (2004)

    Article  CAS  ADS  Google Scholar 

  25. Donadio, D., Raiteri, P. & Parrinello, M. Topological defects and bulk melting of hexagonal ice. J. Phys. Chem. B 109, 5421–5424 (2005)

    Article  CAS  Google Scholar 

  26. Laenen, R., Simeonidis, K. & Laubereau, A. Subpicosecond spectroscopy of liquid water in the infrared: effect of deuteration on the structural and vibrational dynamics. J. Phys. Chem. B 106, 408–417 (2002)

    Article  CAS  Google Scholar 

  27. LaPlaca, S. & Post, B. Thermal expansion of ice. Acta Crystallogr. 13, 503–505 (1960)

    Article  CAS  Google Scholar 

  28. Grow, A. J. & Williamson, T. C. Linear compressibility of ice. J. Geophys. Res. 77, 6348–6352 (1972)

    Article  ADS  Google Scholar 

  29. Minceva-Sukarova, B., Sherman, W. F. & Wilkinson, G. R. The Raman spectra of ice (Ih, II, III, V, VI and IX) as functions of pressure and temperature. J. Phys. C 17, 5833–5850 (1984)

    Article  CAS  ADS  Google Scholar 

  30. Sivakumar, T. C., Chew, H. A. M. & Johari, G. P. Effect of pressure on the Raman spectrum of ice. Nature 275, 524–525 (1978)

    Article  CAS  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Iglev.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iglev, H., Schmeisser, M., Simeonidis, K. et al. Ultrafast superheating and melting of bulk ice. Nature 439, 183–186 (2006). https://doi.org/10.1038/nature04415

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04415

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing