Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Virtual screening of chemical libraries

Abstract

Virtual screening uses computer-based methods to discover new ligands on the basis of biological structures. Although widely heralded in the 1970s and 1980s, the technique has since struggled to meet its initial promise, and drug discovery remains dominated by empirical screening. Recent successes in predicting new ligands and their receptor-bound structures, and better rates of ligand discovery compared to empirical screening, have re-ignited interest in virtual screening, which is now widely used in drug discovery, albeit on a more limited scale than empirical screening.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Complexes predicted from virtual screening compared to X-ray crystallographic structures that were subsequently determined.
Figure 2: Virtual screening for new ligands.
Figure 3: Comparing the structures of new ligands predicted from virtual screening to the structures subsequently determined experimentally.

References

  1. Beddell, C. R., Goodford, P. J., Norrington, F. E., Wilkinson, S. & Wootton, R. Compounds designed to fit a site of known structure in human haemoglobin. Br. J. Pharmacol. 57, 201–209 (1976).

    Article  CAS  Google Scholar 

  2. Cohen, S. S. A strategy for the chemotherapy of infectious disease. Science 197, 431–432 (1977).

    Article  ADS  CAS  Google Scholar 

  3. Itzstein, M. V. et al. Rational design of potent sialidase-based inhibitors of influenza virus replication. Nature 363, 418–423 (1993).

    Article  ADS  Google Scholar 

  4. Varney, M. D. et al. Crystal-structure-based design and synthesis of Benz[cd]indole-containing inhibitors of thymidylate synthase. J. Med. Chem. 35, 663–676 (1992).

    Article  CAS  Google Scholar 

  5. Kuntz, I. D. Structure-based strategies for drug design and discovery. Science 257, 1078–1082 (1992).

    Article  ADS  CAS  Google Scholar 

  6. Jorgensen, W. L. The many roles of computation in drug discovery. Science 303, 1813–1818 (2004).

    Article  ADS  CAS  Google Scholar 

  7. Stahura, F. L. & Bajorath, J. Virtual screening methods that complement HTS. Comb. Chem. High Throughput Screen 7, 259–269 (2004).

    Article  CAS  Google Scholar 

  8. Perutz, M. F. The hemaglobin molecule. Sci. Am. 211, 64–76 (1964).

    Article  ADS  CAS  Google Scholar 

  9. van Gunsteren, W. F. & Berendsen, H. J. C. Computer simulation of molecular dynamics: methodology, applications, and perspectives in chemistry. Angew. Chem. Int. Ed. Engl. 29, 992–1023 (1990).

    Article  Google Scholar 

  10. Rizzo, R., Wang, D., Tirado-Rives, J. & Jorgensen, W. Validation of a model for the complex of HIV-1 reverse transcriptase with sustiva through computation of resistance profiles. J. Am. Chem. Soc. 122, 12898–12900 (2000).

    Article  CAS  Google Scholar 

  11. Rosenfeld, R. J. et al. Automated docking of ligands to an artificial active site: augmenting crystallographic analysis with computer modeling. J. Comput. Aided Mol. Des. 17, 525–536 (2003).

    Article  ADS  CAS  Google Scholar 

  12. Brik, A. et al. Rapid diversity-oriented synthesis in microtiter plates for in situ screening of HIV protease inhibitors. Chembiochem. 4, 1246–1248 (2003).

    Article  CAS  Google Scholar 

  13. Schapira, M. et al. Discovery of diverse thyroid hormone receptor antagonists by high-throughput docking. Proc. Natl Acad. Sci. USA 100, 7354–7359 (2003).

    Article  ADS  CAS  Google Scholar 

  14. Evers, A. & Klebe, G. Ligand-supported homology modeling of G-protein-coupled receptor sites: models sufficient for successful virtual screening. Angew. Chem. Int. Ed. Engl. 43, 248–251 (2004).

    Article  CAS  Google Scholar 

  15. Shoichet, B. K., McGovern, S. L., Wei, B. & Irwin, J. J. Lead discovery using molecular docking. Curr. Opin. Chem. Biol. 6, 439–446 (2002).

    Article  CAS  Google Scholar 

  16. Schneidman-Duhovny, D., Nussinov, R. & Wolfson, H. J. Predicting molecular interactions in silico: II. Protein-protein and protein-drug docking. Curr. Med. Chem. 11, 91–107 (2004).

    Article  CAS  Google Scholar 

  17. Wyss, P. C. et al. Novel dihydrofolate reductase inhibitors. Structure-based versus diversity-based library design and high-throughput synthesis and screening. J. Med. Chem. 46, 2304–2312 (2003).

    Article  CAS  Google Scholar 

  18. Kick, E. K. et al. Structure-based design and combinatorial chemistry yield low nanomolar inhibitors of cathepsin D. Chem. Biol. 4, 297–307 (1997).

    Article  CAS  Google Scholar 

  19. Doman, T. N. et al. Molecular docking and high-throughput screening for novel inhibitors of protein tyrosine phosphatase-1B. J. Med. Chem. 45, 2213–2221 (2002).

    Article  CAS  Google Scholar 

  20. Paiva, A. M. et al. Inhibitors of dihydrodipicolinate reductase, a key enzyme of the diaminopimelate pathway of Mycobacterium tuberculosis. Biochim. Biophys. Acta. 1545, 67–77 (2001).

    Article  CAS  Google Scholar 

  21. Gradler, U. et al. A new target for shigellosis: rational design and crystallographic studies of inhibitors of tRNA-guanine transglycosylase. J. Mol. Biol. 306, 455–467 (2001).

    Article  CAS  Google Scholar 

  22. Powers, R. A., Morandi, F. & Shoichet, B. K. Structure-based discovery of a novel, noncovalent inhibitor of AmpC beta-lactamase. Structure (Camb.) 10, 1013–1023 (2002).

    Article  CAS  Google Scholar 

  23. Gruneberg, S., Stubbs, M. T. & Klebe, G. Successful virtual screening for novel inhibitors of human carbonic anhydrase: strategy and experimental confirmation. J. Med. Chem. 45, 3588–3602 (2002).

    Article  Google Scholar 

  24. Wei, B. Q., Baase, W. A., Weaver, L. H., Matthews, B. W. & Shoichet, B. K. A model binding site for testing scoring functions in molecular docking. J. Mol. Biol. 322, 339–355 (2002).

    Article  CAS  Google Scholar 

  25. Lipinski, C. A., Lombardo, F., Dominy, B. W. & Feeney, P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 23, 3–25 (1997).

    Article  CAS  Google Scholar 

  26. Oprea, T. I. Current trends in lead discovery: are we looking for the appropriate properties? Mol. Divers 5, 199–208 (2002).

    Article  Google Scholar 

  27. McGovern, S. L., Caselli, E., Grigorieff, N. & Shoichet, B. K. A common mechanism underlying promiscuous inhibitors from virtual and high-throughput screening. J. Med. Chem. 45, 1712–1722 (2002).

    Article  CAS  Google Scholar 

  28. Krämer, O., Hazemann, I., Podjarny, A. D. & Klebe, G. Virtual screening for inhibitors of human aldose reductase. Proteins 55, 814–823 (2004).

    Article  Google Scholar 

  29. Horn, J. R. & Shoichet, B. K. Allosteric inhibition through core disruption. J. Mol. Biol. 336, 1283–1291 (2004).

    Article  CAS  Google Scholar 

  30. Kaiser, J. NIH Gears up for chemical genomics. Science 304, 1728 (2004).

    Article  CAS  Google Scholar 

  31. Kalyanaraman, C., Bernacki, K. & Jacobson, M. P. Virtual screening against highly charged active sites: Identifying substrates of alpha-beta barrel enzymes. Biochemistry in the press.

  32. Pieper, U., Eswar, N., Stuart, A. C., Ilyin, V. A. & Sali, A. MODBASE, a database of annotated comparative protein structure models. Nucleic Acids Res. 30, 255–259 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I thank G. Klebe, A. Olson, and W. Jorgensen for contributing figures and comments, and I. D. Kuntz, M. Jacobson, A. Sali, K. Dill and J. Irwin for many insightful conversations. My laboratory's research in docking is supported by NIGMS.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

B. Shoichet is a partner in a company, Blue Dolphin LLC, that conducts inhibitor discovery campaigns for pharmaceutical and biotech companies.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shoichet, B. Virtual screening of chemical libraries. Nature 432, 862–865 (2004). https://doi.org/10.1038/nature03197

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03197

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing