Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics

Abstract

The interaction of matter and light is one of the fundamental processes occurring in nature, and its most elementary form is realized when a single atom interacts with a single photon. Reaching this regime has been a major focus of research in atomic physics and quantum optics1 for several decades and has generated the field of cavity quantum electrodynamics2,3. Here we perform an experiment in which a superconducting two-level system, playing the role of an artificial atom, is coupled to an on-chip cavity consisting of a superconducting transmission line resonator. We show that the strong coupling regime can be attained in a solid-state system, and we experimentally observe the coherent interaction of a superconducting two-level system with a single microwave photon. The concept of circuit quantum electrodynamics opens many new possibilities for studying the strong interaction of light and matter. This system can also be exploited for quantum information processing and quantum communication and may lead to new approaches for single photon generation and detection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Integrated circuit for cavity QED.
Figure 2: Measurement scheme, resonator and Cooper pair box.
Figure 3: Strong coupling circuit QED in the dispersive regime.
Figure 4: Vacuum Rabi mode splitting.

Similar content being viewed by others

References

  1. Walls, D. & Milburn, G. Quantum Optics (Springer, Berlin, 1994)

    Book  Google Scholar 

  2. Mabuchi, H. & Doherty, A. Cavity quantum electrodynamics: Coherence in context. Science 298, 1372–1377 (2002)

    Article  ADS  CAS  Google Scholar 

  3. Raimond, J., Brune, M. & Haroche, S. Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73, 565–582 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  4. Thompson, R. J., Rempe, G. & Kimble, H. J. Observation of normal-mode splitting for an atom in an optical cavity. Phys. Rev. Lett. 68, 1132–1135 (1992)

    Article  ADS  CAS  Google Scholar 

  5. Nakamura, Y., Pashkin, Y. A. & Tsai, J. S. Coherent control of macroscopic quantum states in a single-Cooper-pair box. Nature 398, 786–788 (1999)

    Article  ADS  CAS  Google Scholar 

  6. Vion, D. et al. Manipulating the quantum state of an electrical circuit. Science 296, 886–889 (2002)

    Article  ADS  CAS  Google Scholar 

  7. Martinis, J. M., Nam, S., Aumentado, J. & Urbina, C. Rabi oscillations in a large Josephson-junction qubit. Phys. Rev. Lett. 89, 117901 (2002)

    Article  ADS  Google Scholar 

  8. Chiorescu, I., Nakmura, Y., Harmans, C. J. P. M. & Mooij, J. E. Coherent quantum dynamics of a superconducting flux qubit. Science 299, 1869–1871 (2003)

    Article  ADS  CAS  Google Scholar 

  9. Yamamoto, T., Pashkin, Y. A., Astafiev, O., Nakamura, Y. & Tsai, J. S. Demonstration of conditional gate operation using superconducting charge qubits. Nature 425, 941–944 (2003)

    Article  ADS  CAS  Google Scholar 

  10. Berkley, A. J. et al. Entangled macroscopic quantum states in two superconducting qubits. Science 300, 1548–1550 (2003)

    Article  ADS  CAS  Google Scholar 

  11. Bouchiat, V., Vion, D., Joyez, P., Esteve, D. & Devoret, M. H. Quantum coherence with a single Cooper pair. Phys. Scr. T76, 165–170 (1998)

    Article  ADS  CAS  Google Scholar 

  12. Blais, A., Huang, R.-S., Wallraff, A., Girvin, S. & Schoelkopf, R. Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation. Phys. Rev. A 69, 062320 (2004)

    Article  ADS  Google Scholar 

  13. Makhlin, Y., Schön, G. & Shnirman, A. Quantum-state engineering with Josephson-junction devices. Rev. Mod. Phys. 73, 357–400 (2001)

    Article  ADS  Google Scholar 

  14. Buisson, O. & Hekking, F. in Macroscopic Quantum Coherence and Quantum Computing (eds Averin, D. V., Ruggiero, B. & Silvestrini, P.) (Kluwer, New York, 2001)

    Google Scholar 

  15. Marquardt, F. & Bruder, C. Superposition of two mesoscopically distinct quantum states: Coupling a Cooper-pair box to a large superconducting island. Phys. Rev. B 63, 054514 (2001)

    Article  ADS  Google Scholar 

  16. Al-Saidi, W. A. & Stroud, D. Eigenstates of a small Josephson junction coupled to a resonant cavity. Phys. Rev. B 65, 014512 (2001)

    Article  ADS  Google Scholar 

  17. Plastina, F. & Falci, G. Communicating Josephson qubits. Phys. Rev. B 67, 224514 (2003)

    Article  ADS  Google Scholar 

  18. Blais, A., Maassen van den Brink, A. & Zagoskin, A. Tunable coupling of superconducting qubits. Phys. Rev. Lett. 90, 127901 (2003)

    Article  ADS  Google Scholar 

  19. Yang, C.-P., Chu, S.-I. & Han, S. Possible realization of entanglement, logical gates, and quantum-information transfer with superconducting-quantum-interference-device qubits in cavity QED. Phys. Rev. A 67, 042311 (2003)

    Article  ADS  Google Scholar 

  20. You, J. Q. & Nori, F. Quantum information processing with superconducting qubits in a microwave field. Phys. Rev. B 68, 064509 (2003)

    Article  ADS  Google Scholar 

  21. Kiraz, A. et al. Cavity-quantum electrodynamics using a single InAs quantum dot in a microdisk structure. Appl. Phys. Lett. 78, 3932–3934 (2001)

    Article  ADS  CAS  Google Scholar 

  22. Childress, L., Sørensen, A. S. & Lukin, M. D. Mesoscopic cavity quantum electrodynamics with quantum dots. Phys. Rev. A 69, 042302 (2004)

    Article  ADS  Google Scholar 

  23. Irish, E. K. & Schwab, K. Quantum measurement of a coupled nanomechanical resonator–Cooper-pair box system. Phys. Rev. B 68, 155311 (2003)

    Article  ADS  Google Scholar 

  24. Weisbuch, C., Nishioka, M., Ishikawa, A. & Arakawa, Y. Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. Phys. Rev. Lett. 69, 3314–3317 (1992)

    Article  ADS  CAS  Google Scholar 

  25. Vuckovic, J., Fattal, D., Santori, C., Solomon, G. S. & Yamamoto, Y. Enhanced single-photon emission from a quantum dot in a micropost microcavity. Appl. Phys. Lett. 82, 3596 (2003)

    Article  ADS  CAS  Google Scholar 

  26. Day, P. K., LeDuc, H. G., Mazin, B. A., Vayonakis, A. & Zmuidzinas, J. A broadband superconducting detector suitable for use in large arrays. Nature 425, 817–821 (2003)

    Article  ADS  CAS  Google Scholar 

  27. Lehnert, K. et al. Measurement of the excited-state lifetime of a microelectronic circuit. Phys. Rev. Lett. 90, 027002 (2003)

    Article  ADS  CAS  Google Scholar 

  28. Nogues, G. et al. Seeing a single photon without destroying it. Nature 400, 239–242 (1999)

    Article  ADS  CAS  Google Scholar 

  29. Schuster, D. I. et al. AC-Stark shift and dephasing of a superconducting quibit strongly coupled to a cavity field. Preprint at http://www.arXiv.org/cond-mat/0408367 (2004).

  30. Rau, I., Johansson, G. & Shnirman, A. Cavity QED in superconducting circuits: susceptibility at elevated temperatures. Preprint at http://www.arXiv.org/cond-mat/0403257 (2004).

Download references

Acknowledgements

We thank J. Teufel, B. Turek and J. Wyatt for their contributions to the project and are grateful to P. Day, D. DeMille, M. Devoret, S. Weinreb and J. Zmuidzinas for numerous conversations. This work was supported in part by the National Security Agency and Advanced Research and Development Activity under the Army Research Office, the NSF, the David and Lucile Packard Foundation, the W. M. Keck Foundation, and the Natural Science and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Wallraff.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wallraff, A., Schuster, D., Blais, A. et al. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162–167 (2004). https://doi.org/10.1038/nature02851

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02851

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing