Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Critically pressured free-gas reservoirs below gas-hydrate provinces

Abstract

Palaeoceanographic data have been used to suggest that methane hydrates play a significant role in global climate change. The mechanism by which methane is released during periods of global warming is, however, poorly understood1. In particular, the size and role of the free-gas zone below gas-hydrate provinces remain relatively unconstrained, largely because the base of the free-gas zone is not a phase boundary and has thus defied systematic description. Here we evaluate the possibility that the maximum thickness of an interconnected free-gas zone is mechanically regulated by valving caused by fault slip in overlying sediments2. Our results suggest that a critical gas column exists below most hydrate provinces in basin settings, implying that these provinces are poised for mechanical failure and are therefore highly sensitive to changes in ambient conditions3. We estimate that the global free-gas reservoir may contain from one-sixth to two-thirds of the total methane trapped in hydrate4. If gas accumulations are critically thick along passive continental slopes, we calculate that a 5 °C temperature increase at the sea floor could result in a release of 2,000 Gt of methane from the free-gas zone, offering a mechanism for rapid methane release during global warming events.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cross-section cartoon of a normal fault in a basin.
Figure 2: Gas column thickness required for fault reactivation (grey) at the Blake ridge.
Figure 3: Depth from sea floor to BSR (m) versus gas column thickness.

Similar content being viewed by others

References

  1. Dickens, G. R. The potential volume of oceanic methane hydrates with variable external conditions. Org. Geochem. 32, 1179–1193 (2001)

    Article  CAS  Google Scholar 

  2. Finkbeiner, T., Zoback, M., Flemings, P. & Stump, B. Stress, pore pressure, and dynamically constrained hydrocarbon columns in the South Eugene Island field, northern Gulf of Mexico. Bull. Am. Assoc. Petrol. Geol. 85, 1007–1031 (2001)

    CAS  Google Scholar 

  3. Flemings, P., Liu, X. & Winters, W. J. Critical pressure and multiphase flow in Blake Ridge gas hydrates. Geology 31, 1057–1060 (2003)

    Article  ADS  CAS  Google Scholar 

  4. Milkov, A. V. Global estimates of hydrate-bound gas in marine sediments: How much is really out there? Earth Sci. Rev. (in the press)

  5. Dickens, G. R., O'Neil, J. R., Rea, D. K. & Owen, R. M. Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene. Paleoceanography 10, 965–971 (1995)

    Article  ADS  Google Scholar 

  6. Katz, M. E., Pak, D. K., Dickens, G. R. & Miller, K. G. The source and fate of massive carbon input during the latest Paleocene Thermal Maximum. Science 286, 1531–1533 (1999)

    Article  CAS  Google Scholar 

  7. Gorman, A. R. et al. Migration of methane gas through the hydrate stability zone in a low-flux hydrate province. Geology 30, 327–330 (2002)

    Article  ADS  CAS  Google Scholar 

  8. Tryon, M. D., Brown, K. M. & Torres, M. E. Fluid and chemical flux in and out of sediments hosting methane hydrate deposits on Hydrate Ridge, OR, II: Hydrological processes. Earth Planet. Sci. Lett. 201, 541–557 (2002)

    Article  ADS  CAS  Google Scholar 

  9. Holbrook, W. S., Hoskins, H., Wood, W. T., Stephen, R. A. & Lizzarralde, D. Methane gas-hydrate and free gas on the Blake Ridge from vertical seismic profiling. Science 273, 1840–1843 (1996)

    Article  ADS  CAS  Google Scholar 

  10. Engelder, T. & Fischer, M. P. Influence of poroelastic behavior on the magnitude of minimum horizontal stress, Sh, in overpressured parts of sedimentary basins. Geology 22, 949–952 (1994)

    Article  ADS  Google Scholar 

  11. Helgerud, M. B., Dvorkin, J. & Nur, A. Elastic-wave velocity in marine sediments with gas hydrates: Effective medium modeling. Geophys. Res. Lett. 26, 2021–2024 (1999)

    Article  ADS  CAS  Google Scholar 

  12. Miller, A. T. (ed.) Proc ODP Init. Rep. Leg 164, 179–198, (1996)

  13. Guerin, G., Goldberg, D. & Meltser, A. Characterization of in situ elastic properties of gas hydrate-bearing sediments on the Blake Ridge. J. Geophys. Res. 104, 17781–17795 (1999)

    Article  ADS  CAS  Google Scholar 

  14. Hamilton, E. L. Vp/Vs and Poisson's ratios in marine sediments and rocks. J. Acoust. Soc. Am. 66, 1093–1101 (1979)

    Article  ADS  Google Scholar 

  15. Mattar, L. & Brar, G. S. Compressibility of natural gases. J. Can. Petrol. Technol. 14, 77–80 (1975)

    Article  Google Scholar 

  16. Bangs, N. L. B., Sawyer, D. S. & Golovchenko, X. Free gas at the base of the gas hydrate zone in the vicinity of the Chile triple junction. Geology 21, 905–908 (1993)

    Article  ADS  CAS  Google Scholar 

  17. Hyndman, R. D., Spence, G. D., Chapman, R., Riedel, M. & Edwards, R. N. in Natural Gas Hydrates: Occurrence, Distribution, and Detection (eds Paul, C. K. & Dillon, W. P.) 273–295 (American Geophysical Union, Washington DC, 2001)

    Google Scholar 

  18. Minshull, T. A., Singh, S. C. & Westbrook, G. K. Seismic velocity structure at a gas hydrate reflector, offshore western Columbia, from full waveform inversion. J. Geophys. Res. 99, 4715–4734 (1994)

    Article  ADS  Google Scholar 

  19. Hovland, M., Gallagher, J. W., Clennell, M. B. & Lekvam, K. Gas hydrate and free gas volumes in marine sediments: Example from the Niger Delta front. Mar. Petrol. Geol. 14, 245–255 (1997)

    Article  CAS  Google Scholar 

  20. Minshull, T. & White, R. Sediment compaction and fluid migration in the Makran accretionary prism. J. Geophys. Res. 94, 7387–7402 (1989)

    Article  ADS  Google Scholar 

  21. Pecher, I. A., Minshull, T. A., Singh, S. C. & von Huene, R. Velocity structure of a bottom simulating reflector offshore Peru: Results from full waveform inversion. Earth Planet. Sci. Lett. 139, 459–469 (1996)

    Article  ADS  CAS  Google Scholar 

  22. Tinivella, U., Lodolo, E., Camerlenghi, A. & Boehm, G. in Gas Hydrates: Relevance to World Margin Stability and Climate Chance (eds Henriet, J. P. & Mienert, J.) 141–151 (The Geological Society, London, 1998)

    Google Scholar 

  23. Kvenvolden, K. A. Gas hydrates–geological perspective and global change. Rev. Geophys. 31, 173–187 (1993)

    Article  ADS  Google Scholar 

  24. Paull, C. K., Buelow, W. J., Bussler, W. III & Borowski, W. S. Increased continental-margin slumping frequency during sea-level lowstands above gas hydrate-bearing sediments. Geology 24, 143–146 (1996)

    Article  ADS  CAS  Google Scholar 

  25. Andreassen, K., Hogstad, K. & Berteussen, K. A. Gas hydrate in the southern Barents Sea, indicated by a shallow seismic anomaly. First Break 8, 237–245 (1990)

    Article  Google Scholar 

  26. Mienert, J., Andreassen, K., Posewang, J. & Lukas, D. in Gas Hydrates: Challenges for the Future (eds Holder, G. D. & Bishnoi, P. R.) 200–210 (New York Academy of Sciences, New York, 2000)

    Google Scholar 

  27. Scholl, D. W. & Hart, P. E. The future of energy gases. Prof. Pap. US Geol. Surv. 1570, 331–351 (1993)

    Google Scholar 

  28. Andreassen, K., Hart, P. E. & Grantz, A. Seismic studies of a bottom simulating reflection related to gas hydrate beneath the continental margin of the Beaufort Sea. J. Geophys. Res. 100, 12659–12673 (1995)

    Article  ADS  Google Scholar 

  29. Sain, K., Minshull, T. A., Singh, S. C. & Hobbs, R. W. Evidence for a thick free gas layer beneath the bottom simulating reflector in the Makran accretionary prism. Mar. Geol. 164, 3–12 (2000)

    Article  ADS  CAS  Google Scholar 

  30. Grevemeyer, I., Rosenberger, A. & Villinger, H. Natural gas hydrates on the continental slope off Pakistan: constraints from seismic techniques. Geophys. J. Int. 140, 295–310 (2000)

    Article  ADS  Google Scholar 

  31. White, R. S. Gas hydrate layers trapping free gas in the Gulf of Oman. Earth Planet. Sci. Lett. 42, 114–120 (1979)

    Article  ADS  CAS  Google Scholar 

  32. White, R. S. Seismic bright spots in the Gulf of Oman. Earth Planet. Sci. Lett. 37, 29–37 (1977)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank J. Dickens, P. Flemings and A. Milkov for discussions. This work was funded jointly by the US National Science Foundation and the US Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew J. Hornbach.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hornbach, M., Saffer, D. & Steven Holbrook, W. Critically pressured free-gas reservoirs below gas-hydrate provinces. Nature 427, 142–144 (2004). https://doi.org/10.1038/nature02172

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02172

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing