Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Stationary pulses of light in an atomic medium

Abstract

Physical processes that could facilitate coherent control of light propagation are under active exploration1,2,3,4,5. In addition to their fundamental interest, these efforts are stimulated by practical possibilities, such as the development of a quantum memory for photonic states6,7,8. Controlled localization and storage of photonic pulses may also allow novel approaches to manipulating of light via enhanced nonlinear optical processes9. Recently, electromagnetically induced transparency10 was used to reduce the group velocity of propagating light pulses11,12 and to reversibly map propagating light pulses into stationary spin excitations in atomic media13,14,15,16. Here we describe and experimentally demonstrate a technique in which light propagating in a medium of Rb atoms is converted into an excitation with localized, stationary electromagnetic energy, which can be held and released after a controllable interval. Our method creates pulses of light with stationary envelopes bound to an atomic spin coherence, offering new possibilities for photon state manipulation and nonlinear optical processes at low light levels.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Physics of stationary pulses of light.
Figure 2: Experimental set-up, results of c.w. experiments and simulations.
Figure 3: Results of pulsed experiments.

Similar content being viewed by others

References

  1. Scully, M. O. & Zubairy, S. M. Quantum Optics (Cambridge Univ. Press, Cambridge, UK, 1997)

    Book  Google Scholar 

  2. Harris, S. E. Electromagnetically induced transparency. Phys. Today 50(7), 36–42 (1997)

    Article  ADS  Google Scholar 

  3. Lukin, M. D. & Imamoglu, A. Controlling photons using electromagnetically induced transparency. Nature 413, 273–276 (2001)

    Article  ADS  CAS  Google Scholar 

  4. Matsko, A. B. et al. Slow, ultraslow, stored, and frozen light. Adv. At. Mol. Opt. Phys. 46, 191–242 (2001)

    Article  ADS  CAS  Google Scholar 

  5. Mabuchi, H. & Doherty, A. C. Cavity quantum electrodynamics: Coherence in context. Science 298, 1372–1377 (2002)

    Article  ADS  CAS  Google Scholar 

  6. Cirac, J. I. et al. Quantum state transfer and entaglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221–3224 (1997)

    Article  ADS  CAS  Google Scholar 

  7. Kuzmich, A. et al. Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles. Nature 423, 731–734 (2003)

    Article  ADS  CAS  Google Scholar 

  8. van der Wal, C. H. et al. Atomic memory for correlated photon states. Science 301, 196–200 (2003)

    Article  ADS  CAS  Google Scholar 

  9. Boyd, R. W. Nonlinear Optics (Academic, New York, 1992)

    Google Scholar 

  10. Boller, K. J., Imamoglu, A. & Harris, S. E. Observation of electromagnetically induced transparency. Phys. Rev. Lett. 66, 2593–2596 (1991)

    Article  ADS  CAS  Google Scholar 

  11. Hau, L. V. et al. Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature 397, 594–598 (1999)

    Article  ADS  CAS  Google Scholar 

  12. Kash, M. M. et al. Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas. Phys. Rev. Lett. 82, 5229–5232 (1999)

    Article  ADS  CAS  Google Scholar 

  13. Fleischhauer, M. & Lukin, M. D. Dark-state polaritons in electromagnetically induced transparency. Phys. Rev. Lett. 84, 5094–5097 (2000)

    Article  ADS  CAS  Google Scholar 

  14. Liu, C. et al. Observation of coherent optical information storage in an atomic medium using halted light pulses. Nature 409, 490–493 (2001)

    Article  ADS  CAS  Google Scholar 

  15. Phillips, D. F. et al. Storage of light in atomic vapor. Phys. Rev. Lett. 86, 783–786 (2001)

    Article  ADS  CAS  Google Scholar 

  16. Zibrov, A. S. et al. Transporting and time reversing light via atomic coherence. Phys. Rev. Lett. 88, 103601 (2002)

    Article  ADS  CAS  Google Scholar 

  17. Kocharovskaya, O., Rostovtsev, Y. & Scully, M. O. Stopping light via hot atoms. Phys. Rev. Lett. 86, 628–631 (2001)

    Article  ADS  CAS  Google Scholar 

  18. Andre, A. & Lukin, M. D. Manipulating light pulses via dynamically controlled photonic band gas. Phys. Rev. Lett. 89, 143602 (2002)

    Article  ADS  CAS  Google Scholar 

  19. Harris, S. E. Electromagnetically induced transparency with matched pulses. Phys. Rev. Lett. 70, 552–555 (1993)

    Article  ADS  CAS  Google Scholar 

  20. Cao, H. et al. Random laser action in semiconductor powder. Phys. Rev. Lett. 82, 2278–2281 (1999)

    Article  ADS  CAS  Google Scholar 

  21. Kogelnik, H. & Shank, C. V. Coupled wave theory of distributed feedback lasers. J. Appl. Phys. 43, 2327–2335 (1972)

    Article  ADS  Google Scholar 

  22. Yablonovich, E. et al. Donor and acceptor modes in photonic bandgap structures. Phys. Rev. Lett. 67, 3380–3383 (1991)

    Article  ADS  Google Scholar 

  23. Slusher, D. & Eggelton, B. (eds) Nonlinear Photonic Crystals (Springer, New York, 2003)

  24. Harris, S. E., Field, J. E. & Imamoglu, A. Nonlinear optical processes using electromagnetically induced transparency. Phys. Rev. Lett. 64, 1107–1110 (1990)

    Article  ADS  CAS  Google Scholar 

  25. Schmidt, H. & Imamoglu, A. Giant Kerr nonlinearity obtained by electromagnetically induced transparency. Opt Lett. 21, 1936–1938 (1996)

    Article  ADS  CAS  Google Scholar 

  26. Hemmer, P. R. et al. Efficient low-intensity optical-phase conjugation based on coherent population trapping in sodium. Opt. Lett. 20, 982–984 (1995)

    Article  ADS  CAS  Google Scholar 

  27. Harris, S. E. & Hau, L. V. Nonlinear optics at low light levels. Phys. Rev. Lett. 82, 4611–4614 (1999)

    Article  ADS  CAS  Google Scholar 

  28. Lukin, M. D. & Imamoglu, A. Nonlinear optics and quantum entanglement of ultraslow single photons. Phys. Rev. Lett. 84, 1419–1422 (2000)

    Article  ADS  CAS  Google Scholar 

  29. Petrosyan, D. & Kurizki, G. Symmetric photon-photon coupling by atoms with Zeeman-split sublevels. Phys. Rev. A 65, 033833 (2002)

    Article  ADS  Google Scholar 

  30. Ottaviani, C., Vitali, D., Artoni, M., Cataliotti, F. & Tombesi, P. Polarization qubit phase gate in driven atomic media. Phys. Rev. Lett. 90, 197902 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank A. Andre, M. Eisaman, L. Childress, C. van der Wal, R. Walsworth, S. Zibrov and T. Zibrova for discussions, experimental help and comments on the manuscript. This work is supported by the NSF, the DARPA, the David and Lucille Packard Foundation and the Alfred Sloan Foundation. Partial support by the ONR (DURIP) is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. D. Lukin.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bajcsy, M., Zibrov, A. & Lukin, M. Stationary pulses of light in an atomic medium. Nature 426, 638–641 (2003). https://doi.org/10.1038/nature02176

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02176

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing