Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Adaptation of core mechanisms to generate cell polarity

Abstract

Cell polarity is defined as asymmetry in cell shape, protein distributions and cell functions. It is characteristic of single-cell organisms, including yeast and bacteria, and cells in tissues of multi-cell organisms such as epithelia in worms, flies and mammals. This diversity raises several questions: do different cell types use different mechanisms to generate polarity, how is polarity signalled, how do cells react to that signal, and how is structural polarity translated into specialized functions? Analysis of evolutionarily diverse cell types reveals that cell-surface landmarks adapt core pathways for cytoskeleton assembly and protein transport to generate cell polarity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Diversity of shapes of polarized cells (not to scale).
Figure 2: Protein pathways for generating cell polarity in budding yeast.
Figure 3: Protein pathways for generating cell polarity in fission yeast.
Figure 4: Organization of polarized epithelial cells and the apical junctional complex.
Figure 5: Generation of cell polarity in epithelia.

Similar content being viewed by others

References

  1. Chant, J. Cell polarity in yeast. Annu. Rev. Cell Dev. Biol. 15, 365–391 (1999).

    CAS  PubMed  Google Scholar 

  2. Chant, J. & Herskowitz I. Genetic control of bud site selection in yeast by a set of gene products that constitute a morphogenetic pathway. Cell 65, 1203–1212 (1991).

    CAS  PubMed  Google Scholar 

  3. Zahner, J. E., Harkins, H. A. & Pringle, J. R. Genetic analysis of the bipolar pattern of bud site selection in the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 16, 1857–1870 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Bender, A. & Pringle, J. R. Multicopy suppression of the cdc24 budding defect in yeast by CDC42 and three newly identified genes including the ras-related gene RSR1. Proc. Natl Acad. Sci. USA 89, 9976–9980 (1989).

    Google Scholar 

  5. Pruyne, D. & Bretscher, A. Polarization of cell growth in yeast I. Establishment and maintenance of polarity states. J. Cell Sci. 113, 365–375 (2000).

    CAS  PubMed  Google Scholar 

  6. Adams, A., Johnson, D., Longnecker, R., Sloat, B. & Pringle, J. CDC42 and CDC43, two additional genes involved in budding and the establishment of cell polarity in the yeast Saccharomyces cerevisiae. J. Cell Biol. 111, 131–142 (1990).

    CAS  PubMed  Google Scholar 

  7. Etienne-Mannevile, S. & Hall, A. Rho GTPases in cell biology. Nature 420, 629–635 (2003).

    ADS  Google Scholar 

  8. Kang, P. J., Sanson, A., Lee, B. & Park, H.-O. A GDP/GTP exchange factor involved in linking a spatial landmark to cell polarity. Science 292, 1376–1378 (2001).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Marston, A. L., Chen, T., Yang, M. C., Belhumeur, P. & Chant, J. A localized GTPase exchange factor, Bud5, determines the orientation of division axes in yeast. Curr. Biol. 11, 803–807 (2001).

    CAS  PubMed  Google Scholar 

  10. Park, H.-O., Sanson, A. & Herskowitz, I. Localization of Bud2p, a GTPase-activating protein necessary for programming cell polarity in yeast to the presumptive bud site. Genes Dev. 13, 1912–1917 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Zheng, Y., Bender, A. & Cerione, R. Interactions among proteins involved in bud-site selection and bud-site assembly in Saccharomyces cerevisiae. J. Biol. Chem. 270, 626–630 (1995).

    CAS  PubMed  Google Scholar 

  12. Wedlich-Soldner, R. Altschuler, S., Wu, L. & Li, R. Spontaneous cell polarization through actomyosin-based delivery of the Cdc42 GTPase. Science 299, 1231–1235 (2003).

    ADS  CAS  PubMed  Google Scholar 

  13. Pruyne, D. & Bretscher, A. Polarization of cell growth in yeast II. The role of the actin cytoskeleton. J. Cell Sci. 113, 571–585 (2000).

    CAS  PubMed  Google Scholar 

  14. Eby, J. et al. Actin cytoskeleton organization regulated by the PAK family of protein kinases. Curr. Biol. 8, 967–970 (1998).

    CAS  PubMed  Google Scholar 

  15. Wu, C., Lytvyn, V., Thomas, D. & Leberer, E. The phosphorylation site for Ste20p-like protein kinase is essential for the function of myosin-I in yeast. J. Biol. Chem. 272, 30623–30626 (1997).

    CAS  PubMed  Google Scholar 

  16. Evangelista, M. et al. A role for myosin-I in actin assembly through interactions with Vrp1p, Bee1p, and the Arp2/3 complex. J. Cell Biol. 148, 353–362 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Lee, W. L., Bezanilli, M. & Pollard, T. D. Fission yeast myosin-I, Myo1p, stimulates actin assembly by Arp2/3 complex and shares functions with WASp. J. Cell Biol. 151, 789–800 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Lechler, T., Jonsdottir, G. A., Klee, S. K., Pellman, D. & Li, R. A two-tiered mechanism by which Cdc42 controls the localization and activation of an Arp2/3-activating motor complex in yeast. J. Cell Biol. 155, 261–270 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sheu, Y. P., Santos, B., Fortin, N., Costigan, C. & Snyder, M. Spa2p interacts with cell polarity proteins and signaling components involved in yeast cell morphogenesis. Mol. Biol. Cell 18, 4035–4069 (1998).

    Google Scholar 

  20. Evangelista, M. et al. Bni1p, a yeast formin linking Cdc42p and the actin cytoskeleton during polarized morphogenesis. Science 276, 118–121 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Sagot, I., Klee, S. K. & Pellman, D. Yeast formins regulate cell polarity by controlling the assembly of actin cables. Nature Cell Biol. 4, 42–50 (2002).

    CAS  PubMed  Google Scholar 

  22. Evangelista, M., Pruyne, D., Amberg, D. C., Boone, C. & Bretscher, A. Formins direct Arp2/3-independent actin filament assembly to polarize cell growth in yeast. Nature Cell Biol. 4, 32–41 (2002).

    CAS  PubMed  Google Scholar 

  23. Imamura, H. et al. Bni1p and Bnr1p: downstream targets of the Rho family of small GTPases which interact with profilin and regulate actin cytoskeleton in Saccharomyces cerevisiae. EMBO J. 16, 2745–2755 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Amberg, D. C., Zahner, J. E., Mulholland, J. W., Pringle, J. R. & Botstein, D. Aip3p/Bud6p, a yeast actin-binding protein that is involved in morphogenesis and the selection of bipolar budding sites. Mol. Biol. Cell 8, 729–753 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Kohno, H. et al. Bni1p implicated in cytoskeletal control is a putative target of Rho1p small GTP binding protein in Saccharomyces cerevisiae. EMBO J. 15, 6060–6068 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Sagot, I., Rodal, A. A., Moseley, J., Goode, B. L. & Pellman, D. An actin nucleation mechanism mediated by Bni1 and profilin. Nature Cell Biol. 4, 626–631 (2002).

    CAS  PubMed  Google Scholar 

  27. Pruyne, D. et al. Role of formins in actin assembly: nucleation and barbed-end association. Science 297, 612–615 (2002).

    ADS  CAS  PubMed  Google Scholar 

  28. Carminati, J. L. & Stearns, T. Microtubules orient the mitotic spindle in yeast through dynein-dependent interactions with the cell cortex. J. Cell Biol. 138, 629–641 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Liakopoulos, D., Kusch, J., Grava, S., Vogel, J. & Barral, Y. Asymmetric loading of Kar9 onto spindle poles and microtubules ensures proper spindle alignment. Cell 112, 561–574 (2003).

    CAS  PubMed  Google Scholar 

  30. Brennwald, P. et al. Sec9 is a SNAP-25-like component of a yeast SNARE complex that may be the effector of Sec4 function in exocytosis. Cell 79, 245–258 (1994).

    CAS  PubMed  Google Scholar 

  31. Schott, D., Ho, J., Pruyne, D. & Bretscher, A. The COOH-terminal domain of Myo2p, a yeast myosin V, has a direct role in secretory vesicle targeting. J. Cell Biol. 147, 791–808 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Karpova, T. S. et al. Role of actin and Myo2p in polarized secretion and growth of Saccharomyces cerevisiae. Mol. Biol. Cell 11, 1727–1737 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. TerBush, D. R., Maurice, T., Roth, D. & Novick, P. The exocyst is a multi-protein complex required for exocytosis in Saccharomyces cerevisiae. EMBO J. 15, 6483–6494 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Novick, P. & Guo, W. Ras family therapy: Rab, Rho and Ral talk to the exocyst. Trends Cell Biol. 12, 247–249 (2002).

    CAS  PubMed  Google Scholar 

  35. Lehman, K., Rossi, G., Adamo, J. E. & Brennwald, P. Yeast homologues of tomosyn and lethal giant larvae function in exocytosis and are associated with the plasma membrane SNARE, Sec9. J. Cell Biol. 146, 125–140 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Chang, F. Establishment of a cellular axis in fission yeast. Trends Genet. 17, 273–278 (2001).

    CAS  PubMed  Google Scholar 

  37. Sawin, K. E., Hajibagheri, M. A. & Nurse, P. Mis-specification of cortical identity in a fission yeast PAK mutant. Curr. Biol. 9, 1335–1338 (1999).

    CAS  PubMed  Google Scholar 

  38. Glynn, J., Lustig, R., Berlin, A. & Chang, F. Role of bud6p and tea1p in the interaction between actin and microtubules for the establishment of cell polarity in fission yeast. Curr. Biol. 11, 836–845 (2001).

    CAS  PubMed  Google Scholar 

  39. Pelham, R. J. & Chang, F. Role of actin polymerization and actin cables in the movement of actin patches in S. pombe. Nature Cell Biol. 3, 235–244 (2001).

    CAS  PubMed  Google Scholar 

  40. Feierbach, B. & Chang, F. Role of the fission yeast formin for3p in cell polarity, actin cable formation, and symmetric cell division. Curr. Biol. 11, 1656–1665 (2001).

    CAS  PubMed  Google Scholar 

  41. Tran, P. T., Marsh, L., Doyle, V., Inoue, S. & Chang, F. A mechanism for nuclear positioning in fission yeast based on microtubule pushing. J. Cell Biol. 153, 397–411 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Brunner, D. & Nurse, P. CLIP170-like Tip1p spatially organizes microtubular dynamics in fission yeast. Cell 102, 695–704 (2000).

    CAS  PubMed  Google Scholar 

  43. Beinhauer, J. D., Hagan, I. M., Hegeman, J. H. & Feig, U. Mal3, the fission yeast homologue of the human APC-interacting protein EB1 is required for microtubule integrity and the maintenance of cell form. J. Cell Biol. 139, 717–728 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Mata, J. & Nurse, P. tea1 and the microtubular cytoskeleton are important for generating global spatial order within the fission yeast cell. Cell 89, 939–949 (1997).

    CAS  PubMed  Google Scholar 

  45. Wang, H. et al. The multiprotein exocyst complex is essential for cell separation in Schizosaccharomyces pombe. Mol. Biol. Cell 13, 515–529 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Yeaman, C., Grindstaff, K. K. & Nelson, W. J. New perspectives on mechanisms involved in generating epithelial cell polarity. Physiol. Rev. 79, 73–98 (1999).

    CAS  PubMed  Google Scholar 

  47. Wang, A. Z., Ojakian, G. K. & Nelson, W. J. Steps in the morphogenesis of a polarized epithelium. I. Uncoupling the roles of cell-cell and cell-substratum contact in establishing plasma membrane polarity in multicellular epithelial (MDCK) cysts. J. Cell Sci. 95,137–151 (1990).

    PubMed  Google Scholar 

  48. O'Brien, L. E., Zegers, M. M. & Mostov, K. E. Building epithelial architecture: insights from three-dimensional culture models. Nature Rev. Mol. Cell Biol. 3, 531–537 (2002).

    CAS  Google Scholar 

  49. Knust, E. & Bossinger, O. Epithelial polarity: composition and formation of intercellular junctions in different organisms. Science 298, 1955–1959 (2003).

    ADS  Google Scholar 

  50. Dimitratos, S. D., Woods, D. F., Stathakis, D. G. & Bryant, P. J. Signaling pathways are focused at specialized regions of the plasma membrane by scaffolding proteins of the MAGUK family. BioEssays 21, 912–921 (1999).

    CAS  PubMed  Google Scholar 

  51. Mohler, P. J., Gramolini, A. O. & Bennettt, V. Ankyrins. J. Cell Sci. 115, 1565–1566 (2002).

    CAS  PubMed  Google Scholar 

  52. Tsukita, S., Furuse, M. & Itoh, M. Structural and signaling molecules come together at tight junctions. Curr. Opin. Cell Biol. 11, 628–633 (1999).

    CAS  PubMed  Google Scholar 

  53. Fukata, M. & Kaibuchi, K. Rho-family GTPases in cadherin-mediated cell–cell adhesion. Nature Rev. Mol. Cell Biol. 2, 887–897 (2001).

    CAS  Google Scholar 

  54. Ligon, L. A., Karki, S., Tokito, M. & Holzbaur, E. L. Dynein binds to β-catenin and may tether microtubules at adherens junctions. Nature Cell Biol. 3, 913–917 (2001).

    CAS  PubMed  Google Scholar 

  55. Balda, M. S., Garrett, M. D. & Matter K. The ZO-1-associated Y-box factor ZONAB regulates epithelial cell proliferation and cell density. J. Cell Biol. 160, 423–432 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Tepass, U., Tanentzapf, G., Ward, R. & Fehon, R. Epithelial cell polarity and cell junctions in Drosophila. Annu. Rev. Genet. 35, 747–784 (2001).

    CAS  PubMed  Google Scholar 

  57. Muller, H. A. J. & Wieschaus, E. armadillo, bazooka, and stardust are critical for early stages in formation of the zonula adherens and maintenance of the polarized blastoderm epithelium in Drosophila. J. Cell Biol. 134, 149–163 (1996).

    CAS  PubMed  Google Scholar 

  58. Cox, R. T., Kirkpatrick, C. & Peifer, M. Armadillo is required for adherens junction assembly, cell polarity, and morphogenesis during Drosophila embryogenesis. J. Cell Biol. 134, 133–148 (1996).

    CAS  PubMed  Google Scholar 

  59. Tepass, U. & Knust, E. crumbs and stardust act in a genetic pathway that controls the organization of epithelia in Drosophila melanogaster. Dev. Biol. 159, 311–326 (1993).

    CAS  PubMed  Google Scholar 

  60. Wodarz, A., Ramath, A., Grimm, A. & Knust, E. Drosophila atypical protein kinase C associates with Bazooka and controls polarity of epithelia and neuroblasts. J. Cell Biol. 150, 1361–1374 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Petronczki, M. & Knoblich, J. DmPAR-6 directs epithelial polarity and asymmetric cell division of neuroblasts in Drosophila. Nature Cell Biol. 3, 43–49 (2001).

    CAS  PubMed  Google Scholar 

  62. Bilder, D. & Perrimon, N. Cooperative regulation of cell polarity and growth by Drosophila tumor suppressors. Science 289, 113–116 (2000).

    ADS  CAS  PubMed  Google Scholar 

  63. Bilder, D., Li, M. & Perrimon, N. Localization of apical determinants by the basolateral PDZ protein Scribble. Nature 403, 676–680 (2000).

    ADS  CAS  PubMed  Google Scholar 

  64. Woods, D. F. & Bryant, P. J. The discs-large tumor suppressor gene of Drosophila encodes a guanylate kinase homolog localized to septate junctions. Cell 66, 451–464 (1991).

    CAS  PubMed  Google Scholar 

  65. Bossinger, O., Klebes, A., Segbert, C., Theres, C. & Knust, E. Zonula adherens formation in Caenorhabditis elegans requires dlg-1, the homologue of the Drosophila gene discs large. Dev. Biol. 230, 29–42 (2001).

    CAS  PubMed  Google Scholar 

  66. Legouis, R. et al. LET-413 is a basolateral protein required for the assembly of adherens junctions in Caenorhabditis elegans. Nature Cell Biol. 2, 415–422 (2000).

    CAS  PubMed  Google Scholar 

  67. Tanentzapf, G. & Tepass, U. Interactions between the crumbs, lethal giant larvae and bazooka pathways in epithelial polarization. Nature Cell Biol. 5, 46–52 (2003).

    CAS  PubMed  Google Scholar 

  68. Bilder, D., Schober, M. & Perrimon, N. Integrating activity of PDZ protein complexes regulates epithelial polarity. Nature Cell Biol. 5, 53–58 (2003).

    CAS  PubMed  Google Scholar 

  69. Hurd, T. W., Gao, L., Roh, M. H., Macara, I. G. & Margolis, B. Direct interaction of two polarity complexes implicated in epithelial tight junction assembly. Nature Cell Biol. 5, 137–142 (2003).

    CAS  PubMed  Google Scholar 

  70. Medina, E. et al. Crumbs interacts with moesin and βHeavy-spectrin in the apical membrane skeleton of Drosophila. J. Cell Biol. 158, 941–951 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Gao, L., Joberty, G. & Macara, I. G. Assembly of epithelial tight junctions is negatively regulated by Par6. Curr. Biol. 12, 221–225 (2002).

    CAS  PubMed  Google Scholar 

  72. Izumi, Y. et al. An atypical PKC directly associates and colocalizes at the epithelial junction with ASIP, a mammalian homologue of the Caenorhabditis elegans polarity protein PAR-3. J. Cell Biol. 143, 95–103 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Suzuki, A. et al. aPKC kinase activity is required for the asymmetric differentiation of the premature junctional complex during epithelial cell polarization. J. Cell Sci. 115, 3565–3573 (2002).

    CAS  PubMed  Google Scholar 

  74. Joberty, G., Petersen, C., Gao, L. & Macara, I. G. A cell-polarity protein Par6 links Par3 and atypical protein kinase C to Cdc42. Nature Cell Biol. 2, 531–539 (2000).

    CAS  PubMed  Google Scholar 

  75. Lin, D. et al. A mammalian PAR-3–PAR-6 complex implicated in Cdc42/Rac1 and aPKC signaling and cell polarity. Nature Cell Biol. 2, 540–547 (2000).

    CAS  PubMed  Google Scholar 

  76. Müsch, A. et al. A mammalian homologue of the Drosophila tumor suppressor lethal (2) giant larvae interacts with basolateral exocytic machinery in MDCK cells. Mol. Biol. Cell. 13, 158–168 (2002).

    PubMed  Google Scholar 

  77. Foe, V. E., Odell, G. M. & Edgar, B. A. in The Development of Drosophila melanogaster Vol. 1 (ed. Bate, M.) 149–300 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1993).

    Google Scholar 

  78. Lecuit, T. & Wieschaus, E. Polarized insertion of new membrane from a cytoplasmic reservoir during cleavage of the Drosophila embryo. J. Cell Biol. 150, 849–860 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Lecuit, T., Samata, R. & Wieschaus, E. slam encodes a developmental regulator of polarized membrane growth during cleavage of the Drosophila embryo. Dev. Cell 2, 425–436 (2002).

    CAS  PubMed  Google Scholar 

  80. Hunter, C. & Wieschaus, E. Regulated expression of nullo is required for the formation of distinct apical and basal adherens junctions in the Drosophila blastoderm. J. Cell Biol. 150, 391–401 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Schejter, E. D. & Wieschaus, E. Bottleneck acts as a regulator of the microfilament network governing cellularization of the Drosophila embryo. Cell 75, 373–385 (1993).

    CAS  PubMed  Google Scholar 

  82. Pfeffer, S. Membrane domains in the secretory and endocytic pathways. Cell 112, 507–517 (2003).

    CAS  PubMed  Google Scholar 

  83. Mostov, K. E. & Deitcher, D. L. Polymeric immunoglobulin receptor expressed in MDCK cells transcytoses IgA. Cell 46, 613–621 (1986).

    CAS  PubMed  Google Scholar 

  84. Bartles, J. R., Feracci, H. M., Stieger, B. & Hubbard, A. L. Biogenesis of the rat hepatocyte plasma membrane in vivo: comparison of the pathways taken by apical and basolateral proteins using subcellular fractionation. J. Cell Biol. 105, 1241–1251 (1987).

    CAS  PubMed  Google Scholar 

  85. Mostov, K. E., Verges, M. & Altschuler, Y. Membrane traffic in polarized epithelial cells. Curr. Opin. Cell Biol. 12, 483–490 (2000).

    CAS  PubMed  Google Scholar 

  86. Lisanti, M. P., Caras, I. W., Davitz, M. A. & Rodriguez-Boulan, E. A glycosphingolipid membrane anchor acts as an apical targeting signal in polarized epithelial cell. J. Cell Biol. 109, 2145–2156 (1989).

    CAS  PubMed  Google Scholar 

  87. Bagnat, M., Chang, A. & Simons, K. Plasma membrane proton ATPase Pma1p requires raft association for surface delivery in yeast. Mol. Biol. Cell 12, 4129–4138 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Hunziker, W., Harter, C., Matter, K. & Mellman, I. Basolateral sorting in MDCK cells requires a distinct cytoplasmic domain determinant. Cell 66, 907–920 (1991).

    CAS  PubMed  Google Scholar 

  89. Areoti, B., Kosen, P. A., Kuntz, I. D., Cohen, F. E. & Mostov, K. E. Mutational and secondary structural analysis of the basolateral sorting signal of the polymeric immunoglobulin receptor. J. Cell Biol. 123, 1149–1160 (1993).

    Google Scholar 

  90. Yoshimori, T., Keller, P., Roth, M. G. & Simons, K. Different biosynthetic transport routes to the plasma membrane in BHK and CHO cells. J. Cell Biol. 133, 247–256 (1996).

    CAS  PubMed  Google Scholar 

  91. Perez-Moreno, M., Jamora, C. & Fuchs, E. Sticky business: orchestrating cellular signals at adherens junctions. Cell 112, 535–548 (2003).

    CAS  PubMed  Google Scholar 

  92. Nelson, W. J. & Veshnock, P. J. Ankyrin (membrane-skeleton) binds to the Na+,K+-ATPase: implications for the organization of membrane domains in polarized cells. Nature 328, 533–536 (1987).

    ADS  CAS  PubMed  Google Scholar 

  93. Dubreuil, R. R., Wang, P., Dahl, S., Lee, J. & Goldstein, L. S. Drosophila β spectrin functions independently of α spectrin to polarize the Na,K ATPase in epithelial cells. J. Cell Biol. 149, 647–656 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Lafont, F., Burkhardt, J. K. & Simons, K. Involvement of microtubule motors in basolateral and apical transport in kidney cells. Nature 372, 801–803 (1994).

    ADS  CAS  PubMed  Google Scholar 

  95. Kreitzer, G., Marmostein, A., Okamoto, P., Vallee, R. & Rodriguez-Boulan, E. Kinesin and dynamin are required for post-Golgi transport of a plasma-membrane protein. Nature Cell Biol. 2, 125–127 (2000).

    CAS  PubMed  Google Scholar 

  96. Low, S. H. et al. Differential localization of syntaxin isoforms in polarized Madin-Darby canine kidney cells. Mol. Biol. Cell 7, 2007–2018 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Kreitzer, G. et al. Three-dimensional analysis of post-Golgi carrier exocytosis in epithelial cells. Nature Cell Biol. 5, 126–136 (2003).

    CAS  PubMed  Google Scholar 

  98. Grindstaff, K. K. et al. Sec6/8 complex is recruited to cell-cell contacts and specifies transport vesicle delivery to the basal-lateral membrane in polarized epithelial cells. Cell 93, 731–740 (1998).

    CAS  PubMed  Google Scholar 

  99. Cohen, D., Musch, A. & Rodriguez-Boulan, E. Selective control of basolateral membrane proteins polarity by Cdc42. Traffic 2, 556–564 (2001).

    CAS  PubMed  Google Scholar 

  100. Vega-Salas, D. E., Salas, P. J., Gundersen, D. & Rodriguez-Boulan, E. Formation of the apical pole of epithelial (Madin-Darby canine kidney) cells: polarity of an apical protein is independent of tight junctions while segregation of a basolateral marker requires cell-cell interactions. J. Cell Biol. 104, 905–916 (1987).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This review is dedicated to I. Herskowitz (University of California, San Francisco) who first inspired me to think broadly about cell polarity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. James Nelson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nelson, W. Adaptation of core mechanisms to generate cell polarity. Nature 422, 766–774 (2003). https://doi.org/10.1038/nature01602

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01602

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing