Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Zero-resistance states induced by electromagnetic-wave excitation in GaAs/AlGaAs heterostructures

Abstract

The observation of vanishing electrical resistance in condensed matter has led to the discovery of new phenomena such as, for example, superconductivity, where a zero-resistance state can be detected in a metal below a transition temperature Tc (ref. 1). More recently, quantum Hall effects were discovered from investigations of zero-resistance states at low temperatures and high magnetic fields in two-dimensional electron systems (2DESs)2,3,4. In quantum Hall systems and superconductors, zero-resistance states often coincide with the appearance of a gap in the energy spectrum1,2,4. Here we report the observation of zero-resistance states and energy gaps in a surprising setting5: ultrahigh-mobility GaAs/AlGaAs heterostructures that contain a 2DES exhibit vanishing diagonal resistance without Hall resistance quantization at low temperatures and low magnetic fields when the specimen is subjected to electromagnetic wave excitation. Zero-resistance-states occur about magnetic fields B = 4/5 Bf and B = 4/9 Bf, where Bf = 2πfm*/e,m* is the electron mass, e is the electron charge, and f is the electromagnetic-wave frequency. Activated transport measurements on the resistance minima also indicate an energy gap at the Fermi level6. The results suggest an unexpected radiation-induced, electronic-state-transition in the GaAs/AlGaAs 2DES.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The Hall effect and the magnetoresistance in a high-mobility 2DES, with and without electromagnetic-wave excitation.
Figure 2: The development of the radiation-induced zero-resistance states with the electromagnetic-wave frequency, f.
Figure 3: The dependence of the magnetoresistance upon the radiation power, current and the temperature.
Figure 4: Energy commensurability, inter-Landau-level electron–hole excitations, and the pairing conjecture.

Similar content being viewed by others

References

  1. Tinkham, M. Introduction to Superconductivity, 2nd edn (McGraw-Hill, New York, 1996)

    Google Scholar 

  2. Prange, R. E. & Girvin, S. M. (eds) The Quantum Hall Effect, 2nd edn (Springer, New York, 1990)

  3. Tsui, D. C., Stormer, H. L. & Gossard, A. C. Zero-resistance state of two dimensional electrons in a quantizing magnetic field. Phys. Rev. B 25, 1405–1407 (1982)

    Article  ADS  CAS  Google Scholar 

  4. Ando, T., Fowler, A. B. & Stern, F. Electronic properties of two-dimensional systems. Rev. Mod. Phys. 54, 437–672 (1982)

    Article  ADS  CAS  Google Scholar 

  5. Mani, R. G., Smet, J. H., von Klitzing, K., Narayanamurti, V. & Umansky, V. Single particle and collective response in the magnetophotoresistance of a high mobility 2DES under microwave excitation. Bull. Am. Phys. Soc. 46, 972 (2001)

    Google Scholar 

  6. von Klitzing, K., et al. Proc. 17th Int. Conf. on the Physics Of Semiconductors (eds Chadi, D. J. & Harrison, W. A.) 271–274 (Springer, New York, 1985)

    Book  Google Scholar 

  7. Zudov, M. A., Du, R. R., Simmons, J. A. & Reno, J. L. Shubnikov-de Haas-like oscillations in millimeterwave photoconductivity in a high mobility two-dimensional electron gas. Phys. Rev. B 64, 201311 (2001)

    Article  ADS  Google Scholar 

  8. Nicholas, R. J., Brummell, M. A. & Portal, J. C. Two-Dimensional Systems, Heterostructures and Superlattices Springer Series in Solid State Sciences (eds Bauer, G., Kuchar, F. & Heinrich, H.) Vol. 53 69–78 (Springer, Berlin, 1984)

    Book  Google Scholar 

  9. Sze, S. M. Physics of Semiconductor Devices, 2nd edn 850 (Wiley, New York, 1981)

    Google Scholar 

  10. Mani, R. G. & Anderson, J. R. Study of the single particle and transport lifetimes in GaAs/AlxGa1-xAs. Phys. Rev. B 37, 4299–4302 (1988)

    Article  ADS  CAS  Google Scholar 

  11. Englert, Th., Mann, J. C., Uihlein, Ch., Tsui, D. C. & Gossard, A. C. Observation of oscillatory linewidth in the cyclotron resonance of GaAs/AlxGa1-xAs heterostructures. Solid State Commun. 46, 545–548 (1983)

    Article  ADS  CAS  Google Scholar 

  12. Schlesinger, Z., Allen, S. J., Huang, J. C. M., Platzmann, P. M. & Tzoar, N. Cyclotron resonance in two dimensions. Phys. Rev. B 30, 435–437 (1984)

    Article  ADS  CAS  Google Scholar 

  13. Kohn, W. Cyclotron resonance and de Haas-van Alphen oscillations of an interacting electron gas. Phys. Rev. 123, 1242–1242 (1961)

    Article  ADS  Google Scholar 

  14. Ando, T. Mass enhancement and subharmonic structure of cyclotron resonance in an interacting two-dimensional electron gas. Phys. Rev. Lett. 36, 1383–1385 (1976)

    Article  ADS  CAS  Google Scholar 

  15. Klahn, S., Horst, M. & Merkt, U. Proc. 18th Int. Conf. on the Physics of Semiconductors (ed. Engstrom, O.) Vol. 2 1161–1163 (World Scientific, Singapore, 1987)

    Google Scholar 

  16. Heitmann, D. Two-dimensional plasmons in homogeneous and laterally microstructured space charge layers. Surf. Sci. 170, 332–345 (1986)

    Article  ADS  CAS  Google Scholar 

  17. Allen, S. J. Jr, Tsui, D. C. & Logan, R. A. Observation of two-dimensional plasmon in silicon inversion layers. Phys. Rev. Lett. 38, 980–983 (1977)

    Article  ADS  CAS  Google Scholar 

  18. Theis, T. N., Kotthaus, J. P. & Stiles, P. J. Wavevector dependence of the two-dimensional plasmon dispersion relationship in the (100) Si inversion layer. Solid State Commun. 26, 603–606 (1977)

    Article  ADS  Google Scholar 

  19. Vasiliadou, E. et al. Collective response in the microwave photoconductivity of Hall bar structures. Phys. Rev. B 48, 17145–17148 (1993)

    Article  ADS  CAS  Google Scholar 

  20. Lerner, I. V. & Lozovik, Yu. E. Two-dimensional electron-hole system in a strong magnetic field as an almost ideal exciton gas. Sov. Phys. JETP 53, 763–770 (1981)

    Google Scholar 

  21. Kallin, C. & Halperin, B. I. Excitations from a filled Landau level in the two-dimensional electron gas. Phys. Rev. B 30, 5655–5668 (1984)

    Article  ADS  Google Scholar 

  22. Bychkov, Yu. A., Maniv, T. & Vagner, I. D. Nuclear spin diffusion via spin-excitons in the quantum Hall regime. Solid State Commun. 94, 61–65 (1995)

    Article  ADS  CAS  Google Scholar 

  23. Little, W. A. Possibility of synthesizing an organic superconductor. Phys. Rev. 134, A1416–A1424 (1965)

    Article  Google Scholar 

  24. Ginzburg, V. L. The problem of high temperature superconductivity. II. Sov. Phys. Uspekhi. 13, 335–352 (1970)

    Article  ADS  Google Scholar 

  25. Allender, D., Bray, J. & Bardeen, J. Model for an exciton mechanism of superconductivity. Phys. Rev. B 7, 1020–1029 (1973)

    Article  ADS  CAS  Google Scholar 

  26. Davis, D., Gutfreund, H. & Little, W. A. Proposed model of a high temperature excitonic superconductor. Phys. Rev. B. 13, 4766–4779 (1976)

    Article  ADS  CAS  Google Scholar 

  27. Hirsch, J. E. & Scalapino, D. J. Enhanced superconductivity in quasi two-dimensional systems. Phys. Rev. Lett. 56, 2732–2735 (1986)

    Article  ADS  CAS  Google Scholar 

  28. Bezryadin, A., Lau, C. N. & Tinkham, M. Quantum suppression of superconductivity in ultrathin nanowires. Nature 404, 971–974 (2000)

    Article  ADS  CAS  Google Scholar 

  29. Paquet, D., Rice, T. M. & Ueda, K. Two-dimensional electron-hole fluid in a strong perpendicular magnetic field: exciton Bose condensate or maximum density two-dimensional droplet. Phys. Rev. B 32, 5208–5221 (1985)

    Article  ADS  CAS  Google Scholar 

  30. Kellogg, M., Spielman, I. B., Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Observation of quantized Hall drag in a strongly correlated bilayer electron system. Phys. Rev. Lett. 88, 126804 (2002)

    Article  ADS  CAS  Google Scholar 

  31. Butov, L. V., Gossard, A. C. & Chemla, D. S. Macroscopically ordered state in an exciton system. Nature 418, 751–754 (2002)

    Article  ADS  CAS  Google Scholar 

  32. Snoke, S., Denev, S., Liu, Y., Pfeiffer, L. & West, K. Long-range transport in excitonic dark states in coupled quantum wells. Nature 418, 754–757 (2002)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge discussions with E. Demler, H. Fertig, R. Gerhardts, W. Hanke, C. Kallin, M. Kruger, L. Manchanda, S. Mikhailov, A. Stern and M. Tinkham. This work has been supported by the ARO, BMBF, CSR at SRC, DFG and GIF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh G. Mani.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mani, R., Smet, J., von Klitzing, K. et al. Zero-resistance states induced by electromagnetic-wave excitation in GaAs/AlGaAs heterostructures. Nature 420, 646–650 (2002). https://doi.org/10.1038/nature01277

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01277

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing