Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The hydrologic cycle in deep-time climate problems

Abstract

Hydrology refers to the whole panoply of effects the water molecule has on climate and on the land surface during its journey there and back again between ocean and atmosphere. On its way, it is cycled through vapour, cloud water, snow, sea ice and glacier ice, as well as acting as a catalyst for silicate–carbonate weathering reactions governing atmospheric carbon dioxide. Because carbon dioxide affects the hydrologic cycle through temperature, climate is a pas des deux between carbon dioxide and water, with important guest appearances by surface ice cover.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Northward heat flux in the atmosphere, broken down into moist and dry contributions.
Figure 2: Characteristic temperature determining the relative importance of latent heat flux as a function of surface temperature.
Figure 3: Regime diagrams showing effects of cloud cover and clear-sky relative humidity on initiation and termination of the snowball Earth state.
Figure 4: Relation between precipitation and temperature.

Similar content being viewed by others

References

  1. Hoffman, P. F., Kaufman. A. J., Halverson, G. P. & Schrag, D. P. A Neoproterozoic snowball earth. Science 281, 1342–1346 (1998).

    Article  ADS  CAS  Google Scholar 

  2. Hoffman, P. F. & Schrag, D. P. The snowball Earth hypothesis: testing the limits of global change. Terra Nova (in the press).

  3. Held, I. M. & Soden, B. J. Water vapor feedback and global warming. Annu. Rev. Energ. Environ. 25, 441–475 (2000).

    Article  Google Scholar 

  4. Pierrehumbert, R. T. in Mechanisms of Global Change at Millennial Time Scales (eds Clark, P. U., Webb, R. S. & Keigwin, L. D.) Geophys. Monogr. Ser. 112 (American Geophysical Union, Washington DC, 1999).

    Google Scholar 

  5. Dahl-Jehnsen, D. et al. Past temperatures directly from the Greenland Ice Sheet. Science 282, 268–271 (1998).

    Article  ADS  Google Scholar 

  6. Lea, D. W., Pak, D. K. & Spero, H. J. Climate impact of late quaternary Pacific equatorial sea surface temperature variations. Science 289, 1719–1724 (2000).

    Article  ADS  CAS  Google Scholar 

  7. Lear, C. H., Elderfield, H. & Wilson, P. A. Cenozoic deep-sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite. Science 287, 269–272 (2000).

    Article  ADS  CAS  Google Scholar 

  8. Huber, B. T. Tropical paradise at the Cretaceous poles? Science 282, 2199–2200 (1998)

    Article  CAS  Google Scholar 

  9. Pearson, P. N. et al. Warm tropical sea surface temperatures in the Late Cretaceous and Eocene epochs. Nature 413, 481–487 (2001).

    Article  ADS  CAS  Google Scholar 

  10. Trenberth, K. E. & Caron, J. M. Estimates of meridional atmosphere and ocean heat transports. J. Clim. 14, 3433–3443 (2001).

    Article  ADS  Google Scholar 

  11. Manabe, S. & Broccoli, A. J. The influence of continental ice sheets on the climate of an ice age. J. Geophys. Res. 90(C2), 2167–2190 (1985).

    Article  ADS  Google Scholar 

  12. Broccoli, A. J. Tropical cooling at the last glacial maximum: an atmosphere-mixed layer ocean model simulation. J. Clim. 13, 951–976 (2000).

    Article  ADS  Google Scholar 

  13. Hall, N. M. J., Dong, B. & Valdes, P. J. Atmospheric equilibrium, instability and energy transport at the last glacial maximum. Clim. Dynam. 12, 497–511 (1996).

    Article  ADS  Google Scholar 

  14. Sokolov, A. P. & Stone, P. H. A flexible climate model for use in integrated assessments. Clim. Dynam. 14, 291–303 (1998).

    Article  ADS  Google Scholar 

  15. Jenkins, G. S. & Smith, S. R. GCM simulations of Snowball Earth conditions during the late Proterozoic. Geophys. Res. Lett. 26, 2263–2266 (1999).

    Article  ADS  CAS  Google Scholar 

  16. Poulsen, C., Pierrehumbert, R. T. & Jacob, R. Impact of ocean dynamics on the simulation of the Neoproterozoic “Snowball Earth”. Geophys. Res. Lett. 28, 1575–1578 (2001).

    Article  ADS  Google Scholar 

  17. Barron, E. J., Fawcett, P. J., Peterson, W. H., Pollard, D. & Thompson, S. L. A simulation of mid-Cretaceous climate. Paleoceanography 10, 953–962 (1995).

    Article  ADS  Google Scholar 

  18. Bush, A. B. & Philander, S. G. H. The late Cretaceous: simulation with a coupled atmosphere-ocean general circulation model. Paleoceanography 12, 495–516 (1997).

    Article  ADS  Google Scholar 

  19. Huber, M. & Sloan, L. C. Heat transport, deep waters, and thermal gradients: coupled simulation of an Eocene Greenhouse Climate. Geophys. Res. Lett. 28, 3481–3484 (2001).

    Article  ADS  Google Scholar 

  20. Huber, M. & Sloan, L. C. Climatic responses to tropical sea surface temperature changes on a “greenhouse” Earth. Paleoceanography 15, 443–450 (2000).

    Article  ADS  Google Scholar 

  21. Kirk-Davidoff, D. B., Schrag, D. P. & Anderson, J. G. On the feedback of stratospheric clouds on polar climate. Geophys. Res. Lett. (in press).

  22. Hyde, W. T. ., Crowley, T. J., Baum, S. K. & Peltier, W. R. Neoproterozoic 'snowball Earth' simulations with a coupled climate-ice sheet model. Nature 405, 425–429 (2000).

    Article  ADS  CAS  Google Scholar 

  23. Chandler, M. A. & Sohl, L. E. Climate forcings and the initiation of low-latitude ice sheets during the Neoproterozoic Varanger glacial interval. J. Geophys. Res. 105, 20737–20756 (2000).

    Article  ADS  CAS  Google Scholar 

  24. Caldeira, K. & Kasting, J. F. Susceptibility of the early Earth to irreversible glaciation caused by carbon-dioxide clouds. Nature 359, 226–228 (1992).

    Article  ADS  CAS  Google Scholar 

  25. Kasting, J. F., Pollack, J. B. & Ackerman, T. P. Response of Earth's atmosphere to increases in solar flux and implications for loss of water from Venus. Icarus 57, 335–355 (1984).

    Article  ADS  CAS  Google Scholar 

  26. Pierrehumbert, R. T. & Erlick, C. On the scattering greenhouse effect of CO2 ice clouds. J. Atmos. Sci. 55, 1897–1903 (1998).

    Article  ADS  Google Scholar 

  27. Briegleb, B. P. Delta-Eddington approximation for solar radiation in the NCAR Community Climate Model. J. Geophys. Res. 97, 7603–7612 (1992).

    Article  ADS  Google Scholar 

  28. Warren, S. G., Brandt, R. E., Grenfell, T. C. & McKay, C. P. Snowball Earth: ice thickness on the tropical ocean. J. Geophys. Res. (in the press).

  29. Hay, W. W., DeConto, R. M. & Wold, C. N. Climate: is the past the key to the future? Geol. Rundsch. 86(2), 471–491 (1997).

    Article  ADS  Google Scholar 

  30. Sagan, C. & Mullen, G. Earth and Mars—evolution of atmospheres and surface temperatures. Science 177, 52–56 (1972).

    Article  ADS  CAS  Google Scholar 

  31. Walker, J. C. G., Hays, P. B. & Kasting, J. F. A negative feedback mechanism for the long-term stabilization of Earth's surface-temperature. J. Geophys. Res. 86(Nc10), 9776–9782 (1981).

    Article  ADS  Google Scholar 

  32. Berner, R. A. GEOCARB II: a revised model of atmospheric CO2 over Phanerozoic time. Am. J. Sci. 294, 56–91 (1994).

    Article  ADS  CAS  Google Scholar 

  33. Berner, R. A. & Kothavala, Z. GEOCARB III: a revised model of atmospheric CO2 over phanerozoic time. Am. J. Sci. 301, 182–204 (2001).

    Article  ADS  CAS  Google Scholar 

  34. Vogelezang, D. H. P. & Holtslag, A. A. M. Evaluation and model impacts of alternative boundary-layer height formulations. Bound. Layer Meteorol. 81, 245–269 (1996).

    Article  ADS  Google Scholar 

  35. Kiehl, J. T. et al. The National Center for Atmospheric Research Community Climate Model: CCM3. J. Climate 11, 1131–1149 (1998).

    Article  ADS  Google Scholar 

  36. Emanuel, K. A. Atmospheric Convection (Oxford Univ. Press, New York, 1994).

    Google Scholar 

  37. Christie-Blick, N., Sohl, L. E. & Kennedy, M. J. Considering a Neoproterozoic snowball Earth. Science 284, 1087 (1999).

    Article  ADS  Google Scholar 

  38. McMechan, M. E. Vreeland diamictites-Neoproterozoic glaciogenic slope deposits, Rocky Mountains, northeast British Columbia. Can. Bull. Petrol. Geol. 48, 246–261 (2000).

    Article  Google Scholar 

  39. McKay, C. P. Thickness of tropical ice and photosynthesis on a snowball Earth. Geophys. Res. Lett. 27, 2153–2156 (2000).

    Article  ADS  CAS  Google Scholar 

  40. Lunine, J. I., Lorenz, R. D. & Hartmann, W. K. Some speculations on Titan's past, present and future. Planet Space Sci. 46, 1099–1107 (1998).

    Article  ADS  CAS  Google Scholar 

  41. Forget, F. & Pierrehumbert, R. T. Warming early Mars with carbon dioxide clouds that scatter infrared radiation. Science 278, 1273–1276 (1997).

    Article  ADS  CAS  Google Scholar 

  42. Kasting, J. F. Runaway and moist greenhouse atmospheres and the evolution of Earth and Venus. Icarus 74, 472–494 (1988).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

I am indebted to K. Trenberth, M. Huber and C. Poulsen for providing data used in this review, and for much other valuable assistance. P. Hoffman and D. Schrag introduced me to the snowball Earth problem, and our discussions on this subject have continued over the years; insofar as I understand anything at all about the phenomenon, much credit is due to them. I also benefited from comments by R. Alley, T. Schneider and S. Warren. I had the further advantage of meetings and discussions carried out as part of my participation in the NOAA Panel on Abrupt Climate Change, for which the support of the National Oceanographic and Atmospheric Administration is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond T. Pierrehumbert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pierrehumbert, R. The hydrologic cycle in deep-time climate problems. Nature 419, 191–198 (2002). https://doi.org/10.1038/nature01088

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01088

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing