Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Modulation of virulence within a pathogenicity island in vancomycin-resistant Enterococcus faecalis

Abstract

Enterococci are members of the healthy human intestinal flora, but are also leading causes of highly antibiotic-resistant, hospital-acquired infection1. We examined the genomes of a strain of Enterococcus faecalis that caused an infectious outbreak in a hospital ward in the mid-1980s (ref. 2), and a strain that was identified as the first vancomycin-resistant isolate in the United States3, and found that virulence determinants were clustered on a large pathogenicity island, a genetic element previously unknown in this genus. The pathogenicity island, which varies only subtly between strains, is approximately 150 kilobases in size, has a lower G + C content than the rest of the genome, and is flanked by terminal repeats. Here we show that subtle variations within the structure of the pathogenicity island enable strains harbouring the element to modulate virulence, and that these variations occur at high frequency. Moreover, the enterococcal pathogenicity island, in addition to coding for most known auxiliary traits that enhance virulence of the organism, includes a number of additional, previously unstudied genes that are rare in non-infection-derived isolates, identifying a class of new targets associated with disease which are not essential for the commensal behaviour of the organism.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pulsed-field gel electrophoretic (PFGE) banding patterns of SfiI-restricted genomic DNA8.
Figure 2: Schematic alignment and comparison of the genomic regions harbouring Esp, cytolysin and flanking functions within the PAI in MMH594, to similar regions in strains V586 and V583.
Figure 3: Junction sequences flanking the PAI in infection-derived isolates V583 (Esp-, Cyl-), V586 (Esp+, Cyl-) and MMH594 (Esp+, Cyl+).
Figure 4: Linear representation of the pathogenicity island in E. faecalis MMH594.

Similar content being viewed by others

References

  1. Richards, M. J., Edwards, J. R., Culver, D. H. & Gaynes, R. P. Nosocomial infections in combined medical-surgical intensive care units in the United States. Infect. Control Hosp. Epidemiol. 21, 510–515 (2000)

    Article  CAS  Google Scholar 

  2. Huycke, M. M., Spiegel, C. A. & Gilmore, M. S. Bacteremia caused by hemolytic, high-level gentamicin-resistant Enterococcus faecalis. Antimicrob. Agents Chemother. 35, 1626–1634 (1991)

    Article  CAS  Google Scholar 

  3. Sahm, D. F. et al. In vitro susceptibility studies of vancomycin-resistant Enterococcus faecalis. Antimicrob. Agents Chemother. 33, 1588–1591 (1989)

    Article  CAS  Google Scholar 

  4. Arthur, M. & Courvalin, P. Genetics and mechanisms of glycopeptide resistance in enterococci. Antimicrob. Agents Chemother. 37, 1563–1571 (1993)

    Article  CAS  Google Scholar 

  5. Jett, B. D., Huycke, M. M. & Gilmore, M. S. Virulence of enterococci. Clin. Microbiol. Rev. 7, 462–478 (1994)

    Article  CAS  Google Scholar 

  6. Haas, W., Shepard, B. D. & Gilmore, M. S. Two-component regulator of Enterococcus faecalis cytolysin responds to quorum-sensing autoinduction. Nature 415, 84–87 (2002)

    Article  ADS  CAS  Google Scholar 

  7. Ike, Y., Hashimoto, H. & Clewell, D. B. Hemolysin of Streptococcus faecalis subspecies zymogenes contributes to virulence in mice. Infect. Immun. 45, 528–530 (1984)

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Shankar, V., Baghdayan, A. S., Huycke, M. M., Lindahl, G. & Gilmore, M. S. Infection-derived Enterococcus faecalis strains are enriched in esp, a gene encoding a novel surface protein. Infect. Immun. 67, 193–200 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Shankar, N. et al. Role of Enterococcus faecalis surface protein Esp in the pathogenesis of ascending urinary tract infection. Infect. Immun. 69, 4366–4372 (2001)

    Article  CAS  Google Scholar 

  10. Toledo-Arana, A. et al. The enterococcal surface protein, Esp, is involved in Enterococcus faecalis biofilm formation. Appl. Environ. Microbiol. 67, 4538–4545 (2001)

    Article  CAS  Google Scholar 

  11. Willems, R. J. L. et al. Variant esp gene as a marker of a distinct genetic lineage of vancomycin-resistant Enterococcus faecium spreading in hospitals. Lancet 357, 853–855 (2001)

    Article  CAS  Google Scholar 

  12. Woodford, N., Soltani, M. & Hardy, K. J. Frequency of esp in Enterococcus faecium isolates. Lancet 358, 584 (2001)

    Article  CAS  Google Scholar 

  13. Baldassarri, L., Bertuccini, L., Ammendolia, M. G., Gherardi, G. & Creti, R. Variant esp gene in vancomycin-sensitive Enterococcus faecium. Lancet 357, 1802 (2001)

    Article  CAS  Google Scholar 

  14. Rouch, D. A., Byrne, M. E., Kong, Y. C. & Skurray, R. A. The aacA-aphD gentamicin and kanamycin resistance determinant of Tn4001 from Staphylococcus aureus: expression and nucleotide sequence analysis. J. Gen. Microbiol. 133, 3039–3052 (1987)

    CAS  PubMed  Google Scholar 

  15. Dodd, H. M., Horn, N. & Gasson, M. J. Characterization of IS905, a new multicopy insertion sequence identified in lactococci. J. Bacteriol. 176, 3393–3396 (1994)

    Article  CAS  Google Scholar 

  16. Fierer, J. & Guiney, D. G. Diverse virulence traits underlying different clinical outcomes of Salmonella infection. J. Clin. Invest. 107, 775–780 (2001)

    Article  CAS  Google Scholar 

  17. Gold, O. G., Jordan, H. V. & van Houte, J. The prevalence of enterococci in the human mouth and their pathogenicity in animal models. Arch. Oral Biol. 20, 473–477 (1975)

    Article  CAS  Google Scholar 

  18. Ferat, J. L. & Michel, F. Group II self-splicing introns in bacteria. Nature 364, 358–361 (1993)

    Article  ADS  CAS  Google Scholar 

  19. Huang, C. C., Narita, M., Yamagata, T. & Endo, G. Identification of three merB genes and characterization of a broad-spectrum mercury resistance module encoded by a class II transposon of Bacillus megaterium strain MB1. Gene 239, 361–366 (1999)

    Article  CAS  Google Scholar 

  20. Francia, M. V. et al. Completion of the nucleotide sequence of the Enterococcus faecalis conjugative virulence plasmid pAD1 and identification of a second transfer origin. Plasmid 46, 117–127 (2001)

    Article  CAS  Google Scholar 

  21. Hacker, J. & Kaper, J. B. Pathogenicity islands and the evolution of microbes. Annu. Rev. Microbiol. 54, 641–679 (2000)

    Article  CAS  Google Scholar 

  22. Galli, D. & Wirth, R. Comparative analysis of Enterococcus faecalis sex pheromone plasmids identifies a single homologous DNA region which codes for aggregation substance. J. Bacteriol. 173, 3029–3033 (1991)

    Article  CAS  Google Scholar 

  23. Rakita, R. M. et al. Enterococcus faecalis bearing aggregation substance is resistant to killing by human neutrophils despite phagocytosis and neutrophil activation. Infect. Immun. 67, 6067–6075 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Rozdzinski, E., Marre, R., Susa, M., Wirth, R. & Muscholl-Silberhorn, A. Aggregation substance-mediated adherence of Enterococcus faecalis to immobilized extracellular matrix proteins. Microb. Pathog. 30, 211–220 (2001)

    Article  CAS  Google Scholar 

  25. Giard, J. C., Rince, A., Capiaux, H., Auffray, Y. & Hartke, A. Inactivation of the stress-and starvation-inducible gls24 operon has a pleiotrophic effect on cell morphology, stress sensitivity, and gene expression in Enterococcus faecalis. J. Bacteriol. 182, 4512–4520 (2000)

    Article  CAS  Google Scholar 

  26. Novick, R. P., Schlievert, P. & Ruzin, A. Pathogenicity and resistance islands of staphylococci. Microbes Infect. 3, 585–594 (2001)

    Article  CAS  Google Scholar 

  27. Brown, J. S., Gilliland, S. M. & Holden, D. W. A Streptococcus pneumoniae pathogenicity island encoding an ABC transporter involved in iron uptake and virulence. Mol. Microbiol. 40, 572–585 (2001)

    Article  CAS  Google Scholar 

  28. Sambrook, J., Fritsch, E. F. & Maniatis, T. Molecular Cloning. A Laboratory Manual (Cold Spring Harbor Laboratory Press, New York, 1990)

    Google Scholar 

  29. Rutherford, K. et al. Artemis: sequence visualization and annotation. Bioinformatics 16, 944–945 (2000)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institutes of Health, American Heart Association and Research to Prevent Blindness. We thank M. Carson for help with generating the linear map of the pathogenicity island.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan Shankar.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shankar, N., Baghdayan, A. & Gilmore, M. Modulation of virulence within a pathogenicity island in vancomycin-resistant Enterococcus faecalis. Nature 417, 746–750 (2002). https://doi.org/10.1038/nature00802

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature00802

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing