Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Stem cells, cancer, and cancer stem cells

Abstract

Stem cell biology has come of age. Unequivocal proof that stem cells exist in the haematopoietic system has given way to the prospective isolation of several tissue-specific stem and progenitor cells, the initial delineation of their properties and expressed genetic programmes, and the beginnings of their utility in regenerative medicine. Perhaps the most important and useful property of stem cells is that of self-renewal. Through this property, striking parallels can be found between stem cells and cancer cells: tumours may often originate from the transformation of normal stem cells, similar signalling pathways may regulate self-renewal in stem cells and cancer cells, and cancer cells may include 'cancer stem cells' — rare cells with indefinite potential for self-renewal that drive tumorigenesis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Development of haematopoietic stem cells.
Figure 2: Signalling pathways that regulate self-renewal mechanisms during normal stem cell development and during transformation.
Figure 3: Comparison of self-renewal during haematopoietic stem cell development and leukaemic transformation.
Figure 4: Two general models of heterogeneity in solid cancer cells.
Figure 5: Conventional therapies may shrink tumours by killing mainly cells with limited proliferative potential.

Similar content being viewed by others

References

  1. Spangrude, G. J., Heimfeld, S. & Weissman, I. L. Purification and characterization of mouse hematopoietic stem cells. Science 241, 58–62 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Morrison, S. J. & Weissman, I. L. The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype. Immunity 1, 661–673 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Baum, C. M., Weissman, I. L., Tsukamoto, A. S., Buckle, A. M. & Peault, B. Isolation of a candidate human hematopoietic stem-cell population. Proc. Natl Acad. Sci. USA 89, 2804–2808 (1992).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Osawa, M., Hanada, K., Hamada, H. & Nakauchi, H. Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 273, 242–245 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Akashi, K. & Weissman, I. L. in Developmental Biology of Hematopoiesis (ed. Zon, L. I.) 15–34 (Oxford Univ. Press, New York, 2001).

    Google Scholar 

  6. Petersen, B. E. et al. Bone marrow as a potential source of hepatic oval cells. Science 284, 1168–1170 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Brazelton, T. R., Rossi, F. M. V., Keshet, G. I. & Blau, H. M. From marrow to brain: expression of neuronal phenotypes in adult mice. Science 290, 1775–1779 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Mezey, E., Chandross, K. J., Harta, G., Maki, R. A. & McKercher, S. R. Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science 290, 1779–1782 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Lagasse, E. et al. Purified hematopoietic stem cells can differentiate to hepatocytes in vivo. Nature Med. 6, 1229–1234 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Krause, D. S. et al. Multi-organ, multi-lineage engraftment by a single bone marrow derived stem cell. Cell 105, 369–377 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Morrison, S. J., Wandycz, A. M., Hemmati, H. D., Wright, D. E. & Weissman, I. L. Identification of a lineage of multipotent hematopoietic progenitors. Development 124, 1929–1939 (1997).

    CAS  PubMed  Google Scholar 

  12. Weissman, I. L. Translating stem and progenitor cell biology to the clinic: barriers and opportunities. Science 287, 1442–1446 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Miller, C. L. & Eaves, C. J. Expansion in vitro of adult murine hematopoietic stem cells with transplantable lympho-myeloid reconstituting ability. Proc. Natl Acad. Sci. USA 94, 13648–13653 (1997).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Domen, J., Gandy, K. L. & Weissman, I. L. Systemic overexpression of BCL-2 in the hematopoietic system protects transgenic mice from the consequences of lethal irradiation. Blood 91, 2272–2282 (1998).

    CAS  PubMed  Google Scholar 

  15. Domen, J. & Weissman, I. L. Hematopoietic stem cells need two signals to prevent apoptosis; BCL-2 can provide one of these, Kitl/c-Kit signaling the other. J. Exp. Med. 192, 1707–1718 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Taipale, J. & Beachy, P. A. The Hedgehog and Wnt signaling pathways in cancer. Nature 411, 349–354 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Varnum-Finney, B. et al. Pluripotent, cytokine-dependent, hematopoietic stem cells are immortalized by constitutive Notch1 signaling. Nature Med. 6, 1278–1281 (2000).

    CAS  PubMed  Google Scholar 

  18. Karanu, F. N. et al. The Notch ligand Jagged-1 represents a novel growth factor of human hematopoietic stem cells. J. Exp. Med. 192, 1365–1372 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bhardwaj, G. et al. Sonic hedgehog induces the proliferation of primitive human hematopoietic cells via BMP regulation. Nature Immunol. 2, 172–180 (2001).

    Article  CAS  Google Scholar 

  20. Nusse, R. & Varmus, H. E. Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell 31, 99–109 (1982).

    Article  CAS  PubMed  Google Scholar 

  21. Cadigan, K. M. & Nusse, R. Wnt signaling: a common theme in animal development. Genes Dev. 11, 3286–3305 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Reya, T. et al. Wnt signaling regulates B lymphocyte proliferation through a LEF-1 dependent mechanism. Immunity 13, 15–24 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Austin, T. W., Solar, G. P., Ziegler, F. C., Liem, L. & Matthews, W. A role for the Wnt gene family in hematopoiesis: expansion of multilineage progenitor cells. Blood 89, 3624–3635 (1997).

    CAS  PubMed  Google Scholar 

  24. Van Den Berg, D. J., Sharma, A. K., Bruno, E. & Hoffman, R. Role of members of the Wnt gene family in human hematopoiesis. Blood 92, 3189–3202 (1998).

    CAS  PubMed  Google Scholar 

  25. Zhu, A. J. & Watt, F. M. β-catenin signalling modulates proliferative potential of human epidermal keratinocytes independently of intercellular adhesion. Development 126, 2285–2298 (1999).

    CAS  PubMed  Google Scholar 

  26. Gat, U., DasGupta, R., Degenstein, L. & Fuchs, E. De novo hair follicle morphogenesis and hair tumors in mice expressing a truncated β-catenin in skin. Cell 95, 605–614 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Korinek, V. et al. Depletion of epithelia stem-cell compartments in the small intestine of mice lacking Tcf-4. Nature Genet. 19, 1–5 (1998).

    Article  Google Scholar 

  28. Sell, S. & Pierce, G. B. Maturation arrest of stem cell differentiation is a common pathway for the cellular origin of teratocarcinomas and epithelial cancers. Lab. Invest. 70, 6–22 (1994).

    CAS  PubMed  Google Scholar 

  29. Sawyers, C., Denny, C. & Witte, O. Leukemia and the disruption of normal hematopoiesis. Cell 64, 337–350 (1991).

    Article  CAS  PubMed  Google Scholar 

  30. Kondo, M., Weissman, I. L. & Akashi, K. Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 91, 661–672 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Bonnet, D. & Dick, J. E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Med. 3, 730–737 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Miyamoto, T., Weissman, I. L. & Akashi, K. AML1/ETO-expressing nonleukemic stem cells in acute myelogenous leukemia with 8;21 chromosomal translocation. Proc. Natl Acad. Sci. USA 97, 7521–7526 (2000).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. George, A. A. et al. Detection of leukemic cells in the CD34+CD38 bone marrow progenitor population in children with acute lymphoblastic leukemia. Blood 97, 3925–3930 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Mauro, M. J. & Druker, B. J. Chronic myelogenous leukemia. Curr. Opin. Oncol. 13, 3–7 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Lagasse, E. & Weissman, I. L. bcl-2 inhibits apoptosis of neutrophils but not their engulfment by macrophages. J. Exp. Med. 179, 1047–1052 (1994).

    Article  CAS  PubMed  Google Scholar 

  36. Traver, D., Akashi, K., Weissman, I. L. & Lagasse, E. Mice defective in two apoptosis pathways in the myeloid lineage develop acute myeloblastic leukemia. Immunity 9, 47–57 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Polakis, P. Wnt signaling and cancer. Genes Dev. 14, 1837–1851 (2000).

    CAS  PubMed  Google Scholar 

  38. Tsukamoto, A., Grosschedl, R., Guzman, R., Parslow, T. & Varmus, H. E. Expression of the int-1 gene in transgenic mice is associated with mammary gland hyperplasia and adenocarcinomas in male and female mice. Cell 55, 619–625 (1988).

    Article  CAS  PubMed  Google Scholar 

  39. Weissman, I. L. & Baird, S. in Neoplastic Transformation: Mechanisms and Consequences (ed. Korprowski, H.) 135–152 (Dahlem Conferenzen, Berlin, 1977).

    Google Scholar 

  40. McGrath, M. S. & Weissman, I. L. AKR leukemogenesis: identification and biological significance of thymic lymphoma receptors for AKR retroviruses. Cell 17, 65–75 (1979).

    Article  CAS  PubMed  Google Scholar 

  41. McGrath, M. S., Pillemer, E. & Weissman, I. L. Murine leukaemogenesis: monoclonal antibodies to T-cell determinants arrest T-lymphoma cell proliferation. Nature 285, 259–261 (1980).

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Quinn, E. R. et al. The B cell receptor of a hepatitis C virus associated non-Hodgkin's lymphoma binds the viral E-2 envelope protein, implicating immunoglobulin activation in lymphomagenesis. Blood (in the press).

  43. O'Neill, H. C., McGrath, M. S., Allison, J. P. & Weissman, I. L. A subset of T cell receptors associated with L3T4 molecules mediates C6VL leukemia cell binding of its cognate retrovirus. Cell 49, 143–151 (1987).

    Article  CAS  PubMed  Google Scholar 

  44. Morrison, S. J., Shah, N. M. & Anderson, D. J. Regulatory mechanisms in stem cell biology. Cell 88, 287–298 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. Kummermehr, J. & Trott, K.-R. in Stem Cells (ed. Potten, C. S.) 363–399 (Academic, New York, 1997).

    Book  Google Scholar 

  46. Fidler, I. J. & Kripke, M. L. Metastasis results from preexisting variant cells within a malignant tumor. Science 197, 893–895 (1977).

    Article  ADS  CAS  PubMed  Google Scholar 

  47. Fidler, I. J. & Hart, I. R. Biological diversity in metastatic neoplasms: origins and implications. Science 217, 998–1003 (1982).

    Article  ADS  CAS  PubMed  Google Scholar 

  48. Heppner, G. H. Tumor heterogeneity. Cancer Res. 44, 2259–2265 (1984).

    CAS  PubMed  Google Scholar 

  49. Nowell, P. C. Mechanisms of tumor progression. Cancer Res. 46, 2203–2207 (1986).

    CAS  PubMed  Google Scholar 

  50. Nowell, P. C. A minute chromosome in human granulocytic leukemia. Science 132, 1497 (1960).

    Google Scholar 

  51. Fialkow, P. J. Clonal origin of human tumors. Biochim. Biophys. Acta 458, 283–321 (1976).

    CAS  PubMed  Google Scholar 

  52. Fearon, E. R., Hamilton, S. R. & Vogelstein, B. Clonal analysis of human colorectal tumors. Science 238, 193–197 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  53. Park, C. H., Bergsagel, D. E. & McCulloch, E. A. Mouse myeloma tumor stem cells: a primary cell culture assay. J. Natl Cancer Inst. 46, 411–422 (1971).

    CAS  PubMed  Google Scholar 

  54. Bruce, W. R. & Gaag, H. v. d. A quantitative assay for the number of murine lymphoma cells capable of proliferation in vivo. Nature 199, 79–80 (1963).

    Article  ADS  CAS  PubMed  Google Scholar 

  55. Wodinsky, I., Swiniarski, J. & Kensler, C. J. Spleen colony studies of leukemia L1210. I. Growth kinetics of lymphocytic L1210 cells in vivo as determined by spleen colony assay. Cancer Chemother. Rep. 51, 415–421 (1967).

    Google Scholar 

  56. Bergsagel, D. E. & Valeriote, F. A. Growth characteristics of a mouse plasma cell tumor. Cancer Res. 28, 2187–2196 (1968).

    CAS  PubMed  Google Scholar 

  57. Bonnet, D. & Dick, J. E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Med. 3, 730–737 (1997).

    Article  CAS  PubMed  Google Scholar 

  58. Southam, C. M. & Brunschwig, A. Quantitative studies of autotransplantation of human cancer. Cancer 14, 971–978 (1961).

    Article  Google Scholar 

  59. Hamburger, A. W. & Salmon, S. E. Primary bioassay of human tumor stem cells. Science 197, 461–463 (1977).

    Article  ADS  CAS  PubMed  Google Scholar 

  60. Salsbury, A. J. The significance of the circulating cancer cell. Cancer Treatment Rev. 2, 55–72 (1975).

    Article  CAS  Google Scholar 

  61. Williams, S. D. Treatment of disseminated germ cell tumors with cisplatin, bleomycin, and either vinblastine or etoposide. N. Engl. J. Med. 316, 1435–1439 (1987).

    Article  CAS  PubMed  Google Scholar 

  62. Stockler, M., Wilcken, N. R. C., Ghersi, D. & Simes, R. J. Systematic reviews of chemotherapy and endocrine therapy in metastatic breast cancer. Cancer Treatment Rev. 26, 151–168 (2000).

    Article  CAS  Google Scholar 

  63. Lippman, M. E. High-dose chemotherapy plus autologous bone marrow transplantation for metastatic breast cancer. N. Engl. J. Med. 342, 1119–1120 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Harrison, D. E. & Lerner, C. P. Most primitive hematopoietic stem cells are stimulated to cycle rapidly after treatment with 5-fluorouracil. Blood 78, 1237–1240 (1991).

    CAS  PubMed  Google Scholar 

  65. Bouwens, L. & DeBlay, E. Islet morphogenesis and stem cell markers in rat pancreas. J. Histochem. Cytochem. 44, 947–951 (1996).

    Article  CAS  PubMed  Google Scholar 

  66. Peters, R., Leyvraz, S. & Perey, L. Apoptotic regulation in primitive hematopoietic precursors. Blood 92, 2041–2052 (1998).

    CAS  PubMed  Google Scholar 

  67. Domen, J., Gandy, K. L. & Weissman, I. L. Systemic overexpression of BCL-2 in the hematopoietic system protects transgenic mice from the consequences of lethal irradiation. Blood 91, 2272–2282 (1998).

    CAS  PubMed  Google Scholar 

  68. Feuerhake, F., Sigg, W., Hofter, E. A., Dimpfl, T. & Welsch, U. Immunohistochemical analysis of Bcl-2 and Bax expression in relation to cell turnover and epithelial differentiation markers in the non-lactating human mammary gland epithelium. Cell Tissue Res. 299, 47–58 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. Zhou, S. et al. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nature Med. 7, 1028–1034 (2001).

    Article  CAS  PubMed  Google Scholar 

  70. Terskikh, A. V. et al. From hematopoiesis to neuropoiesis: evidence of overlapping genetic programs. Proc. Natl Acad. Sci. USA 98, 7934–7939. (2001).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bittner, M. et al. Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature 406, 536–540 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  72. Perou, C. M. et al. Molecular portraits of human breast tumours. Nature 406, 747–752 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  73. Alizadeh, A. A. et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403, 503–511 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  74. Golub, T. R. Genome-wide views of cancer. N. Engl. J. Med. 344, 601–602 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Sgroi, D. C. et al. In vivo gene expression profile analysis of human breast cancer progression. Cancer Res. 59, 5656–5661 (1999).

    CAS  PubMed  Google Scholar 

  76. Leethanakul, C. et al. Distinct pattern of expression of differentiation and growth-related genes in squamous cell carcinomas of the head and neck revealed by the use of laser capture microdissection and cDNA arrays. Oncogene 19, 3220–3224 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Kogan, S. C. et al. BCL-2 cooperates with promyelocytic leukemia retinoic acid receptor α chimeric protein (PMLRARα) to block neutrophil differentiation and initiate acute leukemia. J. Exp. Med. 193, 531–543 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wechsler-Reya, R. J. & Scott, M. P. Control of neuronal precursor proliferation in the cerebellum by Sonic Hedgehog. Neuron 22, 103–114 (1999).

    Article  CAS  PubMed  Google Scholar 

  79. Zhang, Y. & Kalderon, D. Hedgehog acts as a somatic stem cell factor in the Drosophila ovary. Nature 410, 599–604 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  80. Henrique, D. et al. Maintenance of neuroepithelial progenitor cells by Delta-Notch signalling in the embryonic chick retina. Curr. Biol. 7, 661–670 (1997).

    Article  CAS  PubMed  Google Scholar 

  81. Austin, J. & Kimble, J. glp-1 is required in the germ line for regulation of the decision between mitosis and meiosis in C. elegans. Cell 51, 589–599 (1987).

    Article  CAS  PubMed  Google Scholar 

  82. Chan, E. F., Gat, U., McNiff, J. M. & Fuchs, E. A common human skin tumour is caused by activating mutations in β-catenin. Nature Genet. 21, 410–413 (1999).

    Article  CAS  PubMed  Google Scholar 

  83. Wechsler-Reya, R. & Scott, M. P. The developmental biology of brain tumors. Annu. Rev. Neurosci. 24, 385–428 (2001).

    Article  CAS  PubMed  Google Scholar 

  84. Gailani, M. R. & Bale, A. E. Acquired and inherited basal cell carcinomas and the patched gene. Adv. Dermatol. 14, 261–283 (1999).

    CAS  PubMed  Google Scholar 

  85. Ellisen, L. W. et al. TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 66, 649–661 (1991).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irving L. Weissman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reya, T., Morrison, S., Clarke, M. et al. Stem cells, cancer, and cancer stem cells. Nature 414, 105–111 (2001). https://doi.org/10.1038/35102167

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35102167

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing