Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Gene expression in Pseudomonas aeruginosa biofilms

Abstract

Bacteria often adopt a sessile biofilm lifestyle that is resistant to antimicrobial treatment1,2,3,4,5. Opportunistic pathogenic bacteria like Pseudomonas aeruginosa can develop persistent infections1,2,3. To gain insights into the differences between free-living P. aeruginosa cells and those in biofilms, and into the mechanisms underlying the resistance of biofilms to antibiotics, we used DNA microarrays. Here we show that, despite the striking differences in lifestyles, only about 1% of genes showed differential expression in the two growth modes; about 0.5% of genes were activated and about 0.5% were repressed in biofilms. Some of the regulated genes are known to affect antibiotic sensitivity of free-living P. aeruginosa. Exposure of biofilms to high levels of the antibiotic tobramycin caused differential expression of 20 genes. We propose that this response is critical for the development of biofilm resistance to tobramycin. Our results show that gene expression in biofilm cells is similar to that in free-living cells but there are a small number of significant differences. Our identification of biofilm-regulated genes points to mechanisms of biofilm resistance to antibiotics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Scanning electron micrographs of a P. aeruginosa biofilm on the surface of a granite pebble.
Figure 2: Gene expression and spot intensities of the 5,500 P. aeruginosa genes analysed with the microarray.
Figure 3: Comparison of wild-type and rpoS-mutant P. aeruginosa biofilms.

Similar content being viewed by others

References

  1. Costerton, J. W., Lewandowski, Z., Caldwell, D. E., Korber, D. R. & Lappin-Scott, H. M. Microbial biofilms. Annu. Rev. Microbiol. 49, 711–745 (1995).

    Article  CAS  Google Scholar 

  2. Costerton, J. W., Stewart, P. S. & Greenberg, E. P. Bacterial biofilms: a common cause of persistent infections. Science 284, 1318–1322 (1999).

    Article  ADS  CAS  Google Scholar 

  3. Burns, J. L., Ramsey, B. W. & Smith, A. L. Clinical manifestations and treatment of pulmonary infections in cystic fibrosis. Adv. Pediatr. Infect. Dis. 8, 53–66 (1993).

    CAS  PubMed  Google Scholar 

  4. DeBeer, D., Stoodley, P. & Lewandowski, Z. Liquid flow in heterogenous biofilms. Biotech. Bioeng. 44, 636–641 (1994).

    Article  CAS  Google Scholar 

  5. Lawrence, J. R., Korber, D. R., Hoyle, B. D., Costerton, J. W. & Caldwell, D. E. Optical sectioning of microbial biofilms. J. Bacteriol. 173, 6558–6567 (1991).

    Article  CAS  Google Scholar 

  6. Hoiby, N. Antibiotic therapy for chronic infection of pseudomonas in the lung. Annu. Rev. Med. 44, 1–10 (1993).

    Article  CAS  Google Scholar 

  7. Singh, P. K. et al. Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 407, 762–764 (2000).

    Article  ADS  CAS  Google Scholar 

  8. O'Toole, G. A. & Kolter, R. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol. Microbiol. 30, 295–304 (1998).

    Article  CAS  Google Scholar 

  9. Bangera, M. G., Ichikawa, J. K., Marx, C. & Lory, S. in Am. Soc. Microbiol. 100th Gen. Meeting (ASM Press, Los Angeles, 2000).

    Google Scholar 

  10. Costerton, J. W. et al. Biofilms, the customized microniche. J. Bacteriol. 176, 2137–2142 (1994).

    Article  CAS  Google Scholar 

  11. Stover, C. K. et al. Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature 406, 959–964 (2000).

    Article  ADS  CAS  Google Scholar 

  12. Hill, D. F., Short, N. J., Perham, R. N. & Petersen, G. B. DNA sequence of the filamentous bacteriophage Pf1. J. Mol. Biol. 218, 349–364 (1991).

    Article  CAS  Google Scholar 

  13. Zabriskie, J. B. Viral-induced bacterial toxins. Annu. Rev. Med. 17, 337–350 (1966).

    Article  CAS  Google Scholar 

  14. Johnson, J. A., Morris, J. G. & Kaper, J. B. Gene encoding zonula occludens toxin (zot) does not occur independently from cholera enterotoxin genes (ctx) in Vibrio cholerae. J. Clin. Microbiol. 31, 732–733 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Greenberg, E. P. Bacterial genomics: Pump up the versatility. Nature 406, 947–948 (2000).

    Article  ADS  CAS  Google Scholar 

  16. Hancock, R. E. W. Alterations in outer membrane permeability. Annu. Rev. Microbiol. 38, 237–264 (1984).

    Article  CAS  Google Scholar 

  17. Nikaido, H. & Vaara, M. Molecular basis of bacterial outer membrane permeability. Microbiol. Rev. 49, 872–878 (1985).

    Google Scholar 

  18. Bryan, L. E. & Kwan, S. Roles of ribosomal binding, membrane potential, and electron transport in bacterial uptake of streptomycin and gentamicin. Antimicrob. Agents Chemother. 23, 835–845 (1983).

    Article  CAS  Google Scholar 

  19. Bryan, L. E., Nicas, T., Holloway, B. W. & Crowther, C. Aminoglycoside-resistant mutation of Pseudomonas aeruginosa defective in cytochrome c552 and nitrate reductase. Antimicrob. Agents Chemother. 17, 71–79 (1980).

    Article  CAS  Google Scholar 

  20. Damper, P. D. & Epstein, W. Role of membrane potential in bacterial resistance to aminoglycoside antibiotics. Antimicrob. Agents Chemother. 20, 803–808 (1981).

    Article  CAS  Google Scholar 

  21. Bryan, L. E., Haraphongse, R. & Elzen, H. M. V. D. Gentamicin resistance in clinical-isolates of Pseudomonas aeruginosa associated with diminished gentamicin accumulation and no detectable enzymatic modification. J. Antibiot. (Tokyo) 29, 743–753 (1976).

    Article  CAS  Google Scholar 

  22. MacLeod, D. L. et al. Aminoglycoside-resistance mechanisms for cystic fibrosis Pseudomonas aeruginosa isolates are unchanged by long-term, intermittent, inhaled tobramycin treatment. J. Infect. Dis. 181, 1180–1184 (2000).

    Article  CAS  Google Scholar 

  23. Rivera, M., Hancock, R. E., Sawyer, J. G., Haug, A. & McGroarty, E. J. Enhanced binding of polycationic antibiotics to lipopolysaccharide from an aminoglycoside-supersusceptible, tolA mutant strain of Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 32, 649–655 (1988).

    Article  CAS  Google Scholar 

  24. Suh, S. J. et al. Effect of rpoS mutation on the stress response and expression of virulence factors in Pseudomonas aeruginosa. J. Bacteriol. 181, 3890–3897 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Heydorn, A. et al. Experimental reproducibility in flow-chamber biofilms. Microbiology 146, 2409–2415 (2000).

    Article  CAS  Google Scholar 

  26. Whiteley, M., Parsek, M. R. & Greenberg, E. P. Regulation of quorum sensing by RpoS in Pseudomonas aeruginosa. J. Bacteriol. 182, 4356–4360 (2000).

    Article  CAS  Google Scholar 

  27. Hoiby, N. Pseudomonas in Cystic Fibrosis: Past, Present and Future 1–25 (Cystic Fibrosis Trust, Berlin, 1998).

    Google Scholar 

  28. Davies, D. G. et al. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280, 295–298 (1998).

    Article  ADS  CAS  Google Scholar 

  29. Hentzer, M. et al. Alginate overproduction affects Pseudomonas aeruginosa biofilm structure and function. J. Bacteriol. 183, 5395–5401 (2001).

    Article  CAS  Google Scholar 

  30. Ichikawa, J. K. et al. Interaction of Pseudomonas aeruginosa with epithelial cells: identification of differentially regulated genes by expression microarray analysis of human cDNAs. Proc. Natl Acad. Sci. USA 97, 9659–9664 (2000).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Moninger for assistance with electron microscopy and A. Hay for providing information on E. coli biofilm gene expression in advance of publication. Supported by a grant from the National Institutes of Health (E.P.G.), a New Technologies Grant from the Cystic Fibrosis Foundation (S.L.), and a grant from the Procter & Gamble Company (E.P.G.). M.W. was supported by a National Science Foundation Research Training Grant and a US Public Health Service Training Grant. G.M.T. is supported by a National Science Foundation Center Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. P. Greenberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Whiteley, M., Bangera, M., Bumgarner, R. et al. Gene expression in Pseudomonas aeruginosa biofilms. Nature 413, 860–864 (2001). https://doi.org/10.1038/35101627

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35101627

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing