Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Locally critical quantum phase transitions in strongly correlated metals

Abstract

When a metal undergoes a continuous quantum phase transition, non-Fermi-liquid behaviour arises near the critical point. All the low-energy degrees of freedom induced by quantum criticality are usually assumed to be spatially extended, corresponding to long-wavelength fluctuations of the order parameter. But this picture has been contradicted by the results of recent experiments on a prototype system: heavy fermion metals at a zero-temperature magnetic transition. In particular, neutron scattering from CeCu6-x Aux has revealed anomalous dynamics at atomic length scales, leading to much debate as to the fate of the local moments in the quantum-critical regime. Here we report our theoretical finding of a locally critical quantum phase transition in a model of heavy fermions. The dynamics at the critical point are in agreement with experiment. We propose local criticality to be a phenomenon of general relevance to strongly correlated metals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A theoretical model of heavy fermions.
Figure 2: Diagram of a conventional quantum phase transition in Kondo lattices.
Figure 3: Diagram of a locally critical quantum phase transition in Kondo lattices.

Similar content being viewed by others

References

  1. Sachdev, S. Quantum Phase Transitions (Cambridge Univ. Press, Cambridge, 1999).

    MATH  Google Scholar 

  2. Maple, M. B. et al. Non-Fermi-liquid behavior in strongly correlated f-electron materials. J. Low Temp. Phys. 95, 225–243 (1994).

    Article  ADS  CAS  Google Scholar 

  3. Mathur, N. D. et al. Magnetically mediated superconductivity in heavy fermion compounds. Nature 394, 39–43 (1998).

    Article  ADS  CAS  Google Scholar 

  4. von Löhneysen, H. et al. Non-Fermi-liquid behavior in a heavy-fermion alloy at a magnetic instability. Phys. Rev. Lett. 72, 3262–3265 (1994).

    Article  ADS  Google Scholar 

  5. Trovarelli, O. et al. YbRb2Si2: Pronounced non-Fermi-liquid effects above a low-lying magnetic phase transition. Phys. Rev. Lett. 85, 626–629 (2000).

    Article  ADS  CAS  Google Scholar 

  6. Heuser, K. et al. Inducement of non-Fermi-liquid behavior with a magnetic field. Phys. Rev. B 57, R4198–R4201 (1998).

    Article  ADS  CAS  Google Scholar 

  7. Estrela, P., de Visser, A., Naka, T., de Boer, F. R. & Pereira, L. C. J. High-pressure study of the non-Fermi liquid material U2Pt2In. Preprint cond-mat/0009324 at 〈http://xxx.lanl.gov〉 (2000).

  8. Steward, G. Non-Fermi liquid behavior in d- and f- electron metals. Rev. Mod. Phys. 73, in the press (2001).

  9. Schröder, A., Aeppli, G., Bucher, E., Ramazashvili, R. & Coleman, P. Scaling of magnetic fluctuations near a quantum phase transition. Phys. Rev. Lett. 80, 5623–5626 (1998).

    Article  ADS  Google Scholar 

  10. Stockert, O., von Löhneysen, H., Rosch, A., Pyka, N. & Loewenhaupt, M. Two dimensional fluctuations at the quantum critical point of CeCu6-xAux. Phys. Rev. Lett. 80, 5627–5630 (1998).

    Article  ADS  CAS  Google Scholar 

  11. Schröder, A. et al. Onset of antiferromagnetism in heavy-fermion metals. Nature 407, 351–355 (2000).

    Article  ADS  Google Scholar 

  12. Lonzarich, G. G. in Electron (ed. Springford, M.) 109–147 (Cambridge Univ. Press, Cambridge, 1997).

    Google Scholar 

  13. Hertz, J. A. Quantum critical phenomena. Phys. Rev. B 14, 1165–1184 (1976).

    Article  ADS  CAS  Google Scholar 

  14. Millis, A. J. Effect of a nonzero temperature on quantum critical points in itinerant fermion systems. Phys. Rev. B 48, 7183–7196 (1993).

    Article  ADS  CAS  Google Scholar 

  15. Coleman, P. Theories of non-Fermi liquid behavior in heavy fermions. Physica B 259–261, 353–358 (1999).

    Article  ADS  Google Scholar 

  16. Si, Q., Smith, J. L. & Ingersent, K. Quantum critical behavior in Kondo systems. Int. J. Mod. Phys. B 13, 2331–2342 (1999).

    Article  ADS  CAS  Google Scholar 

  17. Rosch, A. Interplay of disorder and spin fluctuations in the resistivity near a quantum critical point. Phys. Rev. Lett. 82, 4280–4283 (1999).

    Article  ADS  CAS  Google Scholar 

  18. Coleman, P., Pépin, C. & Tsvelik, A. M. Supersymmetric spin operators. Phys. Rev. B 62, 3852–3868 (2000).

    Article  ADS  CAS  Google Scholar 

  19. Leggett, A. J. et al. Dynamics of the dissipative two-state system. Rev. Mod. Phys. 59, 1–86 (1987).

    Article  ADS  CAS  Google Scholar 

  20. Hewson, A. C. The Kondo Problem to Heavy Fermions (Cambridge Univ. Press, Cambridge, 1993).

    Book  Google Scholar 

  21. Anderson, P. W. Localized magnetic states in metals. Phys. Rev. 124, 41–53 (1961).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  22. Doniach, S. The Kondo lattice and weak antiferromagnetism. Physica B 91, 231–234 (1977).

    Article  Google Scholar 

  23. Varma, C. M. Mixed-valence compounds. Rev. Mod. Phys. 48, 219–238 (1976).

    Article  ADS  CAS  Google Scholar 

  24. Smith, J. L. & Si, Q. Spatial correlations in dynamical mean-field theory. Phys. Rev. B 61, 5184–5192 (2000).

    Article  ADS  CAS  Google Scholar 

  25. Si, Q. & Smith, J. L. Kosterlitz-Thouless transition and short range spatial correlations in an extended Hubbard model. Phys. Rev. Lett. 77, 3391–3394 (1996).

    Article  ADS  CAS  Google Scholar 

  26. Chitra, R. & Kotliar, G. Effect of Coulomb long-range interactions on the Mott transition. Phys. Rev. Lett. 84, 3678–3681 (2000).

    Article  ADS  CAS  Google Scholar 

  27. Georges, A., Kotliar, G., Krauth, W. & Rozenberg, M. J. Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions. Rev. Mod. Phys. 68, 13–125 (1996).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  28. Smith, J. L. & Si, Q. Non-Fermi liquids in the two-band extended Hubbard model. Europhys. Lett. 45, 228–234 (1999).

    Article  ADS  CAS  Google Scholar 

  29. Sengupta, A. M. Spin in a fluctuating field: the Bose (+Fermi) Kondo models. Phys. Rev. B 61, 4041–4043 (2000).

    Article  ADS  CAS  Google Scholar 

  30. Sachdev, S. & Ye, J. Gapless spin-fluid ground state in a random quantum Heisenberg magnet. Phys. Rev. Lett. 70, 3339–3342 (1993).

    Article  ADS  CAS  Google Scholar 

  31. Continentino, M. A. Universal behavior in heavy fermions. Phys. Rev. B 47, 11587–11590 (1993).

    Article  ADS  CAS  Google Scholar 

  32. Rosch, A., Schröder, A., Stockert, O. & von Löhneysen, H. Mechanism for the non-Fermi-liquid behavior in CeCu6-xAux. Phys. Rev. Lett. 79, 159–162 (1997).

    Article  ADS  CAS  Google Scholar 

  33. Aronson, M. C. et al. Non-Fermi-liquid scaling of the magnetic response in UCu5-xPdx (x = 1, 1.5). Phys. Rev. Lett. 75, 725–728 (1995).

    Article  ADS  CAS  Google Scholar 

  34. Vojta, M., Buragohain, C. & Sachdev, S. Quantum impurity dynamics in two-dimensional antiferromagnets and superconductors. Phys. Rev. B 61, 15152–15184 (2000).

    Article  ADS  CAS  Google Scholar 

  35. Abanov, Ar. & Chubukov, A. V. Spin-fermion model near the quantum critical point: one-loop renormalization group results. Phys. Rev. Lett. 84, 5608–5611 (2000).

    Article  ADS  CAS  Google Scholar 

  36. Chakravarty, S., Halperin, B. I. & Nelson, D. R. Two-dimensional quantum Heisenberg antiferromagnet at low temperatures. Phys. Rev. B 39, 2344–2371 (1989).

    Article  ADS  CAS  Google Scholar 

  37. Raymond, S., Regnault, L. P., Flouquet, J., Wildes, A. & Lejay, P. Pressure dependence of the spin dynamics around a quantum critical point: an inelastic neutron scattering study of Ce0.87La0.13Ru2Si2. Preprint cond-mat/0102427 at 〈http://xxx.lanl.gov〉 (2001).

  38. Sachdev, S. Theory of finite-temperature crossovers near quantum critical points close to, or above, their upper-critical dimensions. Phys. Rev. B 55, 142–163 (1997).

    Article  ADS  CAS  Google Scholar 

  39. Varma, C. M., Littlewood, P. B., Schmitt-Rink, S., Abrahams, E. & Ruckenstein, A. E. Phenomenology of the normal state of Cu-O high temperature superconductors. Phys. Rev. Lett. 63, 1996–1999 (1989).

    Article  ADS  CAS  Google Scholar 

  40. Wilson, K. G. & Kogut, J. The renormalization group and the ε expansion. Phys. Rep. C 12, 75–200 (1974).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank G. Aeppli, A. Chubukov, P. Coleman, A. J. Millis, A. Schröder, A. M. Sengupta, C. M. Varma and P. Wölfle for discussions. This work was supported by the NSF, TCSUH and the A. P. Sloan Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qimiao Si.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Si, Q., Rabello, S., Ingersent, K. et al. Locally critical quantum phase transitions in strongly correlated metals. Nature 413, 804–808 (2001). https://doi.org/10.1038/35101507

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35101507

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing