Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Magnetic carbon

A Retraction to this article was published on 30 March 2006

A Corrigendum to this article was published on 25 August 2005

Abstract

The discovery of nanostructured forms of molecular carbon has led to renewed interest in the varied properties of this element. Both graphite and C60 can be electron-doped by alkali metals1 to become superconducting; transition temperatures of up to 52 K have been attained by field-induced hole-doping of C60 (ref. 2). Recent experiments3,4 and theoretical studies5,6 have suggested that electronic instabilities in pure graphite may give rise to superconducting and ferromagnetic properties, even at room temperature. Here we report the serendipitous discovery of strong magnetic signals in rhombohedral C60. Our intention was to search for superconductivity in polymerized C60; however, it appears that our high-pressure, high-temperature polymerization process results in a magnetically ordered state. The material exhibits features typical of ferromagnets: saturation magnetization, large hysteresis and attachment to a magnet at room temperature. The temperature dependences of the saturation and remanent magnetization indicate a Curie temperature near 500 K.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Raman spectrum of magnetically ordered rhombohedral C60 polymer (Rh-C60).
Figure 2: Temperature dependence of the magnetic susceptibility of Rh-C60.
Figure 3: Hysteresis loops for Rh-C60.
Figure 4: Magnetization of Rh-C60 in a fixed applied field of 0.2 T (upper curve, triangles) and the remanent magnetization obtained at H = 0 T (lower curve, circles) as a function of temperature.

Similar content being viewed by others

References

  1. Hebard, A. F. et al. Superconductivity at 18 K in potassium-doped C60. Nature 350, 600–601 (1991).

    Article  ADS  CAS  Google Scholar 

  2. Schön, J. H., Kloc, C. & Batlogg, B. Superconductivity at 52 K in hole-doped C60. Nature 408, 549–552 (2000).

    Article  ADS  Google Scholar 

  3. Kopelevich, Y., Esquinazi, P., Torres, J. H. S. & Moehlecke, S. Ferromagnetic- and superconducting-like behavior of graphite. J. Low Temp. Phys. 119, 691–702 (2000).

    Article  ADS  CAS  Google Scholar 

  4. Kempa, H. et al. Magnetic-field-driven superconductor-insulator-type transition in graphite. Solid State Commun. 115, 539–542 (2000).

    Article  ADS  CAS  Google Scholar 

  5. González, J., Guinea, F. & Vozmediano, M. A. H. Electron-electron interactions in graphene sheets. Phys. Rev. B 63, 134421-1–134421-8 (2001).

    ADS  Google Scholar 

  6. Harigaya, K. The mechanism of magnetism in stacked nanographite: theoretical study. J. Phys. Condens. Matter 13, 1295–1302 (2001).

    Article  ADS  CAS  Google Scholar 

  7. Narymbetov, B. et al. Origin of ferromagnetic exchange interactions in a fullerene-organic compound. Nature 407, 883–885 (2000).

    Article  ADS  CAS  Google Scholar 

  8. Allemand, P. M. et al. Organic molecular soft ferromagnetism in a fullerene C60. Science 253, 301–303 (1991).

    Article  ADS  CAS  Google Scholar 

  9. Mrzel, A. et al. Ferromagnetism in a cobaltocene-doped fullerene derivative below 19 K due to unpaired spins only on fullerene molecules. Chem. Phys. Lett. 298, 329–334 (1998).

    Article  ADS  CAS  Google Scholar 

  10. Lobach, A. S. et al. C60H18, C60H36 and C70H36 fullerene hydrides: Study by methods of IR, NMR, XPS, EELS and magnetochemistry. Fullerene Sci. Technol. 6, 375–391 (1998).

    Article  CAS  Google Scholar 

  11. Shul'ga, Y. M. et al. Magnetic properties of C60Pdn fullerides. Mol. Cryst. Liq. Cryst. 10, 201–206 (1998).

    CAS  Google Scholar 

  12. Ovchinnikov, A. A. & Shamovsky, I. L. The structure of the ferromagnetic phase of carbon. J. Mol. Struct. (Theochem) 83, 133–140 (1991).

    Article  CAS  Google Scholar 

  13. Miller, J. S. & Epstein, A. J. Molecule-based magnets—An overview. Mater. Res. Soc. Bull. 25, 21–28 (2000).

    Article  CAS  Google Scholar 

  14. Kahashi, M. et al. Discovery of a quasi-1D organic ferromagnet, P-NPNN. Phys. Rev. Lett. 67, 746–748 (1991).

    Article  ADS  Google Scholar 

  15. Du, G., Joo, J., Epstein, A. J. & Miller, J. S. Anomalous charge transport phenomena in molecular-based magnet V (TCNE)x · y(solvent). J. Appl. Phys. 73, 6566–6568 (1993).

    Article  ADS  CAS  Google Scholar 

  16. Iwasa, Y. et al. New phases of C60 synthesised at high pressure. Science 264, 1570–1572 (1994).

    Article  ADS  CAS  Google Scholar 

  17. Núñez–Regueiro, M., Marques, L., Hodeau, J. L. & Perroux, M. Polymerized fullerite structures. Phys. Rev. Lett. 74, 278–281 (1995).

    Article  ADS  Google Scholar 

  18. Sundqvist, B. Fullerenes under high pressures. Adv. Phys. 48, 1–134 (1999).

    Article  ADS  CAS  Google Scholar 

  19. Makarova, T. L. et al. Anisotropic metallic properties of highly-oriented C60 polymer. Synth. Met. 121, 1099–1100 (2001).

    Article  CAS  Google Scholar 

  20. Makarova, T. L. et al. Electrical properties of two-dimensional fullerene matrices. Carbon 39, 2203–2209 (2001).

    Article  CAS  Google Scholar 

  21. Makarova, T. L. et al. in Fullerenes Vol. 7, Recent Advances in the Chemistry and Physics of Fullerenes and Related Materials (eds Kadish, K. M., Guldi, D. M. & Kamat, P. V. ) 628–639 (Proceedings series PV 99-12, Electrochemical Society, Pennington, New Jersey, 1999).

    Google Scholar 

  22. Makarova, T. L. et al. Conductivity of two-dimensional C60 polymers. Mol. Cryst. Liq. Cryst. C 13, 151–156 (2000).

    CAS  Google Scholar 

  23. Davydov, V. A. et al. Spectroscopic study of pressure-polymerized phases of C60. Phys. Rev. B 61, 11936–11945 (2000).

    Article  ADS  CAS  Google Scholar 

  24. Luo, W. L., Wang, H., Ruoff, R. C., Cioslowski, J. & Phelps, S. Susceptibility discontinuity in single-crystal C60. Phys. Rev. Lett. 73, 186–188 (1994).

    Article  ADS  CAS  Google Scholar 

  25. Haddon, R. C. et al. Experimental and theoretical determination of the magnetic susceptibility of C60 and C70. Nature 350, 46–47 (1991).

    Article  ADS  CAS  Google Scholar 

  26. Wang, X. K., Chang, R. P. H., Patashinski, A. & Ketterson, J. B. Magnetic susceptibility of buckytubes. J. Mater. Res. 9, 1578–1582 (1994).

    Article  ADS  CAS  Google Scholar 

  27. Panich, M., Shames, A. I. & Nakajima, T. On paramagnetism in fluorinated graphite: EPR and solid state NMR study. J. Phys. Chem. Solids 62, 959–964 (2001).

    Article  ADS  Google Scholar 

  28. Saito, T., Akita, Y. & Tanaka, K. Magnetic susceptibility of the one-dimensional polymeric phase of RbC60. Phys. Rev. B 61, 16091–16096 (2000).

    Article  ADS  CAS  Google Scholar 

  29. Pekker, S., Forro, L., Mihaly, L. & Janossy, A. Orthorhombic A1C60—a conducting linear alkali fulleride polymer. Solid State Commun. 90, 349–352 (1994).

    Article  ADS  CAS  Google Scholar 

  30. Xu, C. H. & Scuseria, G. E. Theoretical predictions for a 2-dimensional rhombohedral phase of solid C60. Phys. Rev. Lett. 74, 274–277 (1995).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Blinc for discussions, W. Frech for help with impurity analysis, and A. L. Shelankov for comments on the manuscript. This work was done in the framework of a project supported by the Alexander von Humboldt Foundation (T.L.M.). Part of this work was supported by the DFG and FAPESP. B.S. thanks the Swedish Research Council for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana L. Makarova.

Supplementary information

41586_2001_BF35099527_MOESM1_ESM.mpg

Some of our samples show a sufficiently strong magnetisation that they can be lifted off a table surface using a small SmCo magnet (MPG 3835 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Makarova, T., Sundqvist, B., Höhne, R. et al. Magnetic carbon. Nature 413, 716–718 (2001). https://doi.org/10.1038/35099527

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35099527

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing