Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Elasticity of iron at the temperature of the Earth's inner core

Abstract

Seismological body-wave1 and free-oscillation2 studies of the Earth's solid inner core have revealed that compressional waves traverse the inner core faster along near-polar paths than in the equatorial plane. Studies have also documented local deviations from this first-order pattern of anisotropy on length scales ranging from 1 to 1,000 km (refs 3, 4). These observations, together with reports of the differential rotation5 of the inner core, have generated considerable interest in the physical state and dynamics of the inner core, and in the structure and elasticity of its main constituent, iron, at appropriate conditions of pressure and temperature. Here we report first-principles calculations of the structure and elasticity of dense hexagonal close-packed (h.c.p.) iron at high temperatures. We find that the axial ratio c/a of h.c.p. iron increases substantially with increasing temperature, reaching a value of nearly 1.7 at a temperature of 5,700 K, where aggregate bulk and shear moduli match those of the inner core. As a consequence of the increasing c/a ratio, we have found that the single-crystal longitudinal anisotropy of h.c.p. iron at high temperature has the opposite sense from that at low temperature6,7. By combining our results with a simple model of polycrystalline texture in the inner core, in which basal planes are partially aligned with the rotation axis, we can account for seismological observations of inner-core anisotropy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of h.c.p. iron at high pressure as a function of temperature.
Figure 2: Elasticity of h.c.p. iron at a density of 13.04 Mg m-3.
Figure 3: Acoustic properties of iron and the inner core.

Similar content being viewed by others

References

  1. Song, X. D. & Helmberger, D. V. Anisotropy of the Earth's inner core. Geophys. Res. Lett. 20, 2591–2594 (1993).

    Article  ADS  Google Scholar 

  2. Tromp, J. Support for anisotropy of the Earth's inner core from free oscillations. Nature 366, 678–681 (1993).

    Article  ADS  Google Scholar 

  3. Vidale, J. E. & Earle, P. S. Fine scale heterogeneity in the Earth's inner core. Nature 404, 273–275 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Creager, K. C. Large-scale variations in inner core anisotropy. J. Geophys. Res. 104, 23127–23139 (1999).

    Article  ADS  Google Scholar 

  5. Song, X. D. & Richards, P. G. Seismological evidence for differential rotation of the Earth's inner core. Nature 382, 221–224 (1996).

    Article  ADS  CAS  Google Scholar 

  6. Stixrude, L. & Cohen, R. E. High-pressure elasticity of iron and anisotropy of Earth's inner core. Science 267, 1972–1975 (1995).

    Article  ADS  CAS  Google Scholar 

  7. Steinle-Neumann, G., Stixrude, L. & Cohen, R. E. First-principles elastic constants for the hcp transition metals Fe, Co, and Re at high pressure. Phys. Rev. B 60, 791–799 (1999).

    Article  ADS  CAS  Google Scholar 

  8. Stixrude, L., Wasserman, E. & Cohen, R. E. Composition and temperature of the Earth's inner core. J. Geophys. Res. 102, 24729–24739 (1997).

    Article  ADS  CAS  Google Scholar 

  9. Mao, H.-K., Wu, Y., Chen, Y., Shu, J. F. & Jephcoat, A. P. Static compression of iron to 300 GPa and Fe0.8Ni0.2 alloy to 260 GPa: implications for composition of the core. J. Geophys. Res. 95, 21737–32742 (1990).

    Article  ADS  Google Scholar 

  10. Shen, G., Mao, H.-K., Hemley, R. J., Duffy, T. S. & Rivers, M. L. Melting and crystal structure of iron at high pressures and temperatures. Geophys. Res. Lett. 25, 373–376 (1998).

    Article  ADS  CAS  Google Scholar 

  11. Vočadlo, L. et al. Ab initio free energy calculations on the polymorphs of iron at core conditions. Phys. Earth Planet. Inter. 117, 123–137 (2000).

    Article  ADS  Google Scholar 

  12. Brown, J. M. & McQueen, R. Phase transitions, Grüneisen parameter, and elasticity for shocked iron between 77 GPa and 400 GPa. J. Geophys. Res. 91, 7485–7494 (1986).

    Article  ADS  Google Scholar 

  13. Dubrovinsky, L. S. et al. In situ X-ray study of thermal expansion and phase transition of iron at multimegabar pressure. Phys. Rev. Lett. 84, 1720–1724 (2000).

    Article  ADS  CAS  Google Scholar 

  14. Andrault, D., Fiquet, G., Kunz, M., Visocekas, F. & Häusermann, D. The orthorhombic structure of iron: an in situ study at high-temperature and high-pressure. Science 278, 831–834 (1997).

    Article  ADS  CAS  Google Scholar 

  15. Boehler, R. High-pressure experiments and the phase diagram of lower mantle and core materials. Rev. Geophys. 38, 221–245 (2000).

    Article  ADS  CAS  Google Scholar 

  16. Laio, A., Bernard, S., Chiarotti, G. L., Scandolo, S. & Tosatti, E. Physics of iron at Earth's core condition. Science 287, 1027–1030 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Wasserman, E., Stixrude, L. & Cohen, R. E. Thermal properties of iron at high pressures and temperatures. Phys. Rev. B 53, 8296–8309 (1996).

    Article  ADS  CAS  Google Scholar 

  18. Gülseren, O., Cohen, R. E. & Krakauer, H. Equation of state and elasticity of Ta at high pressure. Bull. Am. Phys. Soc. 44, 1490 (1999).

    Google Scholar 

  19. Huang, E., Bassett, W. A. & Tao, P. Pressure-temperature-volume relationship for hexagonal close packed iron determined by synchrotron radiation. J. Geophys. Res. 92, 8129–8135 (1987).

    Article  ADS  CAS  Google Scholar 

  20. Funamori, N., Yagi, T. & Uchida, T. High-pressure and high-temperature in situ x-ray diffraction study of iron to above 30 GPa using MA8-type apparatus. Geophys. Res. Lett. 23, 953–956 (1996).

    Article  ADS  CAS  Google Scholar 

  21. Alfé, D., Gillan, M. J. & Price, G. D. The melting curve of iron at pressures of the Earth's core from ab initio calculations. Nature 401, 462–464 (1999).

    Article  ADS  Google Scholar 

  22. Singh, S. C., Taylor, M. A. J. & Montagner, J. P. On the presence of liquid in Earth's inner core. Science 287, 2471–2474 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Yoshida, S., Sumita, I. & Kumazawa, M. Growth model of the inner core coupled with outer core dynamics and the resultant elastic anisotropy. J. Geophys. Res. 101, 28085–28103 (1996).

    Article  ADS  CAS  Google Scholar 

  24. Dziewonski, A. M. & Anderson, D. L. Preliminary reference Earth model. Phys. Earth Planet. Inter. 25, 297–356 (1981).

    Article  ADS  Google Scholar 

  25. Bergman, M. I. Measurements of elastic anisotropy due to solidification texturing and the implications for the Earth's inner core. Nature 389, 60–63 (1997).

    Article  ADS  CAS  Google Scholar 

  26. Jeanloz, R. & Wenk, H.-R. Convection and anisotropy of the inner core. Geophys. Res. Lett. 15, 72–75 (1988).

    Article  ADS  Google Scholar 

  27. Wenk, H.-R., Matthies, S., Hemley, R. J., Mao, H.-K. & Shu, J. The plastic deformation of iron at pressures of the Earth's inner core. Nature 405, 1044–1046 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Buffett, B. A. Geodynamic estimates of the viscosity of the Earth's inner core. Nature 388, 571–573 (1997).

    Article  ADS  CAS  Google Scholar 

  29. Karato, S.-I. Seismic anisotropy of the Earth's inner core resulting from flow induced by Maxwell stresses. Nature 402, 871–873 (1999).

    Article  ADS  CAS  Google Scholar 

  30. Buffett, B. A. & Wenk, H.-R. Texturing of the Earth's inner core by Maxwell stresses. Nature 413, 60–63 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank B. Buffett and B. Kiefer for discussions, and H. Krakauer and D. Singh for the use of their LAPW code. This work was supported by the US National Science Foundation (R.E.C. and L.S.) and the US Department of Energy (R.E.C.). Calculations were performed on the CRAY SV1 at the Geophysical Laboratory, supported by the US National Science Foundation and the W. M. Keck Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerd Steinle-Neumann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steinle-Neumann, G., Stixrude, L., Cohen, R. et al. Elasticity of iron at the temperature of the Earth's inner core. Nature 413, 57–60 (2001). https://doi.org/10.1038/35092536

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35092536

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing