Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Neanderthal cranial ontogeny and its implications for late hominid diversity

Abstract

Homo neanderthalensis has a unique combination of craniofacial features that are distinct from fossil and extant ‘anatomically modern’ Homo sapiens (modern humans). Morphological evidence, direct isotopic dates1 and fossil mitochondrial DNA from three Neanderthals2,3 indicate that the Neanderthals were a separate evolutionary lineage for at least 500,000 yr. However, it is unknown when and how Neanderthal craniofacial autapomorphies (unique, derived characters) emerged during ontogeny. Here we use computerized fossil reconstruction4 and geometric morphometrics5,6 to show that characteristic differences in cranial and mandibular shape between Neanderthals and modern humans arose very early during development, possibly prenatally, and were maintained throughout postnatal ontogeny. Postnatal differences in cranial ontogeny between the two taxa are characterized primarily by heterochronic modifications of a common spatial pattern of development. Evidence for early ontogenetic divergence together with evolutionary stasis of taxon-specific patterns of ontogeny is consistent with separation of Neanderthals and modern humans at the species level.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Shape variability in an ontogenetic series of Neanderthals (filled circles; see Methods for specimen labels) and modern humans (open circles/diamonds indicate extant/fossil specimens, respectively) for craniomandibular (a), cranial (b) and mandibular (c) landmark configurations.
Figure 2: Correlations between shape (w1), centroid size S and dental age (in postnatal years) for craniomandibular morphologies of Neanderthals (filled circles) and extant/fossil modern humans (open circles/diamonds, respectively).
Figure 3: Patterns of shape change during postnatal development in Neanderthals and modern humans.
Figure 4: Shape differences between Neanderthal and modern human skulls (ac) and mandibles (df).

Similar content being viewed by others

References

  1. Stringer, C. B. & Gamble, C. In Search of the Neanderthals: Solving the Puzzle of Human Origins (Thames and Hudson, London, 1993).

    Google Scholar 

  2. Krings, M. et al. A view of Neandertal genetic diversity. Nature Genet. 26, 144–146 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Ovchinnikov, I. V. et al. Molecular analysis of Neanderthal DNA from the northern Caucasus. Nature 404, 490–493 (2000).

    Article  CAS  PubMed  ADS  Google Scholar 

  4. Zollikofer, C. P. E., Ponce de León, M. S. & Martin, R. D. Computer-assisted paleoanthropology. Evol. Anthropol. 6, 41–54 (1998).

    Article  Google Scholar 

  5. Bookstein, F. L. Morphometric Tools for Landmark Data (Cambridge Univ. Press, Cambridge, 1991).

    MATH  Google Scholar 

  6. Rohlf, F. J. in Contributions to Morphometrics (eds Marcus, L., Bello, E. & García-Valdecasas, A.) 131–159 (Consejo superior de investigaciones científicas, Madrid, 1993).

    Google Scholar 

  7. Tillier, A.-M. in The Human Revolution. Behavioural and Biological Perspectives on the Origins of Modern Humans (eds Mellars, P. & Stringer, C. B.) 286–297 (Edinburgh Univ. Press, Edinburgh, 1989).

    Google Scholar 

  8. Rak, Y., Kimbel, W. H. & Hovers, E. A Neanderthal infant from Amud Cave, Israel. J. Hum. Evol. 26, 313–324 (1994).

    Article  Google Scholar 

  9. Dean, M. C., Stringer, C. B. & Bromage, T. G. Age at death of the Neanderthal child from Devil's Tower, Gibraltar and the implications for studies of general growth and development in Neanderthals. Am. J. Phys. Anthropol. 70, 301–309 (1986).

    Article  CAS  PubMed  Google Scholar 

  10. Stringer, C. B., Dean, M. C. & Martin, R. D. in Primate Life History and Evolution (ed. DeRousseau, C. J.) 115–152 (Wiley-Liss, New York, 1990).

    Google Scholar 

  11. Williams, F. l. E. in Neanderthals on the Edge (eds Stringer, C. B., Barton, R. N. E. & Finlayson, J. C.) 257–267 (Oxbow Books, Oxford, 2000).

    Google Scholar 

  12. Zollikofer, C. P. E., Ponce de León, M. S., Martin, R. D. & Stucki, P. Neanderthal computer skulls. Nature 375, 283–285 (1995).

    Article  CAS  PubMed  ADS  Google Scholar 

  13. Ponce de León, M. S. & Zollikofer, C. P. E. New evidence from Le Moustier 1: computer-assisted reconstruction and morphometry of the skull. Anat. Rec. 254, 474–489 (1999).

    Article  PubMed  Google Scholar 

  14. Ponce de León, M. S. Neanderthal Ontogeny: a Geometric Morphometric Analysis of Cranial Growth. PhD thesis, Univ. Zürich (2000).

    Google Scholar 

  15. O'Higgins, P. & Jones, N. Facial growth in Cercocebus torquatus: an application of three-dimensional geometric morphometric techniques to the study of morphological variation. J. Anat. 193, 251–272 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Rak, Y. The Neanderthal: a new look at an old face. J. Hum. Evol. 15, 151–164 (1986).

    Article  Google Scholar 

  17. Trinkaus, E. The Neandertal face: evolutionary and functional perspectives on a recent hominid face. J. Hum. Evol. 16, 429–443 (1987).

    Article  Google Scholar 

  18. Schwartz, J. H. & Tattersall, I. Significance of some previously unrecognized apomorphies in the nasal region of Homo neanderthalensis. Proc. Natl Acad. Sci. USA 93, 10852–10856 (1996).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  19. Rosas, A. Occurrence of Neanderthal features in mandibles from the Atapuerca-SH site. Am. J. Phys. Anthropol. 114, 74–91 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Enlow, D. H. Facial Growth 3rd edn (Saunders, Philadelphia, 1990).

    Google Scholar 

  21. Lieberman, D. E., Pearson, O. M. & Mowbray, K. M. Basicranial influence on overall cranial shape. J. Hum. Evol. 38, 291–315 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Franciscus, R. G. & Trinkaus, E. Determinants of retromolar space presence in Pleistocene Homo mandibles. J. Hum. Evol. 28, 577–595 (1995).

    Article  Google Scholar 

  23. Lieberman, D. E. in Development, Growth and Evolution (eds O'Higgins, P. & Cohn, M. J.) 85–122 (Linn. Soc. Lond., London, 2000).

    Google Scholar 

  24. Maureille, B. & Bar, D. The premaxilla in Neandertal and early modern children: ontogeny and morphology. J. Hum. Evol. 37, 137–152 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Lieberman, D. E. Sphenoid shortening and the evolution of modern human cranial shape. Nature 393, 158–162 (1998).

    Article  CAS  PubMed  ADS  Google Scholar 

  26. Lieberman, D. E., Ross, C. F. & Ravosa, M. J. The primate cranial base: ontogeny, function, and integration. Yb. Phys. Anthropol. 43, 117–169 (2000).

    Article  Google Scholar 

  27. Lieberman, D. E. & McCarthy, R. C. The ontogeny of cranial base angulation in humans and chimpanzees and its implications for reconstructing pharyngeal dimensions. J. Hum. Evol. 36, 487–517 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Tattersall, I. & Schwartz, J. H. Morphology, paleoanthropology and Neanderthals. New Anat. 253, 113–117 (1998).

    Article  CAS  Google Scholar 

  29. Ubelaker, D. H. Human Skeletal Remains. Excavation, Analysis, Interpretation (Chicago Univ. Press, Chicago, 1978).

    Google Scholar 

  30. Zollikofer, C. P. E. & Ponce de León, M. S. Tools for rapid prototyping in the biosciences. IEEE Comp. Graph. Appl. 15, 48–55 (1995).

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to R. D. Martin and P. Stucki for support of our research. C. B. Stringer's continuous help and advice is gratefully acknowledged. We thank C. Howell, J.-J. Jaeger, D. Lieberman, J. Schwartz and C. Pryce for valuable comments on an earlier version of this paper. We appreciate the help of the following curators in providing access to fossil specimens: J.-J. Cleyet-Merle, J.-M. Cordy, V. Kharitonov, M. Marinot, F. Menghin, R. Orban, I. Pap, Y. Rak, C. B. Stringer, B. Vandermeersch. We also thank the radiologists, physicists and technicians engaged in fossil computer tomography scanning: E. Berenyi, G. Bijl, P. Dondelinger, V. Dousset, W. Fuchs, S. Louryan, V. Makarenko, U. Shreter, N. Strickland and C. L. Zollikofer. This work was supported by the Swiss National Science Foundation and a habilitation grant of the Canton of Zurich.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph P. E. Zollikofer.

Supplementary information

Tables 1 to 3

Table 1: Description of the Neanderthal and the "anatomically modern" Homo sapiens (AMH) sample. (XLS 21 kb)

Table 2: Definitions of the cranial and mandibular landmarks.

Table 3: Statistics of relative warp analyses of the cranio-mandibular, cranial and mandibular landmark configurations.

NeanderthalToSapiens.mov

The animation shows shape transformation of an average Neanderthal skull into an average AMH skull while size is held constant. (MOV 587 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ponce de León, M., Zollikofer, C. Neanderthal cranial ontogeny and its implications for late hominid diversity. Nature 412, 534–538 (2001). https://doi.org/10.1038/35087573

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35087573

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing