Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Diamagnetic activity above Tc as a precursor to superconductivity in La2-xSrxCuO4 thin films

Abstract

Superconductors show zero resistance to electric current, and expel magnetic flux (the Meissner effect) below the transition temperature (Tc). In conventional superconductors, the ‘Cooper pairs’ of electrons that are responsible for superconductivity form only below Tc. In the unconventional high-Tc superconductors, however, a strong electron correlation is essential for pair formation: there is evidence1,2,3,4,5 that some pairs are formed above Tc in samples that have less than the optimal density of charge carriers (underdoped) and an energy gap—the ‘pseudogap’—appears to be present. Moreover, excitations that look like the vortices that carry magnetic flux inside the superconducting state have been reported above Tc (refs 6, 7). Although the origin of the pseudogap remains controversial8,9,10,11, phase fluctuations above Tc, leading to some form of local superconductivity or local pairing, seem essential9,12,13,14,15,16. Here we report magnetic imaging (scanning SQUID microscopy) of La2-xSrxCuO4 thin films. Clear quantized vortex patterns are visible below Tc (18–19 K), and we observe inhomogeneous magnetic domains that persist up to 80 K. We interpret the data as suggesting the existence of diamagnetic regions that are precursors to the Meissner state.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Scanning SQUID microscope image of quantized vortices below Tc.
Figure 2: Scanning SQUID microscope image of magnetic domains at 25.5 K above Tc.
Figure 3: Development of magnetic domains with temperature (ah), as observed by scanning SQUID microscopy.
Figure 4: Development of quantitative scales in the magnetic domains with temperature.

Similar content being viewed by others

References

  1. Timusk, T. & Statt, B. The pseudogap in high-temperature superconductors: an experimental survey. Rep. Prog. Phys. 62, 61–122 (1999).

    Article  ADS  CAS  Google Scholar 

  2. Loeser, A. G. et al. Excitation gap in the normal state of Bi2Sr2CaCu2O8+δ. Science 273, 325–329 (1996).

    Article  ADS  CAS  Google Scholar 

  3. Ding, H. et al. Spectroscopic evidence for a pseudogap in the normal state of underdoped high-Tc superconductors. Nature 382, 51–54 (1996).

    Article  ADS  CAS  Google Scholar 

  4. Imai, T. et al. Cu spin dynamics in high Tc and related oxides investigated by nuclear spin-lattice relaxation. Physica C 162–164, 169–170 (1989).

    Article  ADS  Google Scholar 

  5. Corson, J., Mallozzi, R., Orenstein, J., Eckstein, J. N. & Bozovic, I. Vanishing of phase coherence in underdoped Bi2Sr2CaCu2O8+δ. Nature 398, 221–223 (1999).

    Article  ADS  CAS  Google Scholar 

  6. Xu, Z. A., Ong, N. P., Wang, Y., Kakeshita, T. & Uchida, S. Vortex-like excitations and the onset of superconducting phase fluctuation in underdoped La2-xSrxCuO4. Nature 406, 486–488 (2000).

    Article  ADS  CAS  Google Scholar 

  7. Lee, P. A. Some vortices like it hot. Nature 406, 467–468 (2000).

    Article  CAS  Google Scholar 

  8. Orenstein, J. & Millis, A. J. Advances in the physics of high-temperature superconductivity. Science 288, 468–474 (2000).

    Article  ADS  CAS  Google Scholar 

  9. Emery, V. J. & Kivelson, S. A. Importance of phase fluctuations in superconductors with small superfluid density. Nature 374, 434–437 (1995).

    Article  ADS  CAS  Google Scholar 

  10. Moriya, T., Takahashi, Y. & Ueda, K. Antiferromagnetic spin fluctuations and superconductivity in two-dimensional metals—a possible model for high Tc oxides. J. Phys. Soc. Jpn 59, 2905–2915 (1990).

    Article  ADS  CAS  Google Scholar 

  11. Monthoux, P., Balatsky, A. V. & Pines, D. Toward a theory of high-temperature superconductivity in the antiferromagnetically correlated cuprate oxides. Phys. Rev. Lett. 67, 3448–3451 (1991).

    Article  ADS  CAS  Google Scholar 

  12. Doniach, S. & Inui, M. Long-range Coulomb interactions and the onset of superconductivity in the high-Tc materials. Phys. Rev. B 41, 6668–6678 (1990).

    Article  ADS  CAS  Google Scholar 

  13. Roddick, E. & Stroud, D. Effect of phase fluctuations on the low-temperature penetration depth of high-Tc superconductors. Phys. Rev. Lett. 74, 1430–1433 (1995).

    Article  ADS  CAS  Google Scholar 

  14. Roshsar, D. & Kivelson, S. A. Superconductivity and the quantum hard-core dimer gas. Phys. Rev. Lett. 61, 2376–2379 (1988).

    Article  ADS  Google Scholar 

  15. Sá de Melo, C. A. R., Randeria, M. & Engelbrecht, J. R. Crossover from BCS to Bose superconductivity: transition temperature and time-dependent Ginzburg-Landau theory. Phys. Rev. Lett. 71, 3202–3205 (1993).

    Article  ADS  Google Scholar 

  16. Carlson, E. W., Kivelson, S. A., Emery, V. J. & Manousakis, E. Classical phase fluctuations in high temperature superconductors. Phys. Rev. Lett. 83, 612–615 (1999).

    Article  ADS  CAS  Google Scholar 

  17. Tsuei, C. C. et al. Pairing symmetry and flux quantization in tricrystal superconducting ring of YBa2Cu3O7-δ. Phys. Rev. Lett. 73, 592–596 (1994).

    Article  ADS  Google Scholar 

  18. Tsuei, C. C. & Kirtley, J. R. Pairing symmetry in cuprate superconductors. Rev. Mod. Phys. 72, 969–1016 (2000).

    Article  ADS  CAS  Google Scholar 

  19. Sugimoto, A., Yamaguchi, T. & Iguchi, I. Supercurrent distribution in high-Tc superconducting YBa2Cu2O7-y thin films by scanning superconducting quantum interference device microscopy. Appl. Phys. Lett. 77, 3069–3071 (2000).

    Article  ADS  CAS  Google Scholar 

  20. Morooka, T., Nakayam, S., Odawara, A. & Chinone, K. Observation of superconducting device using magnetic imaging system with a micro-DC superconducting quantum interference device magnetometer. Jpn J. Appl. Phys. 38, L119–L122 (1999).

    Article  ADS  CAS  Google Scholar 

  21. Emery, V. J., Kivelson, S. A. & Tranquada, J. M. Stripe phases in high-temperature superconductors. Proc. Natl Acad. Sci. USA 96, 8814–8817 (1999).

    Article  ADS  CAS  Google Scholar 

  22. Zaanen, J. Self-organized one dimensionality. Science 286, 251–252 (1999).

    Article  CAS  Google Scholar 

  23. Kiryukhin, V. et al. Multiphase segregation and metal-insulator transition in single crystal La5/8-yPryCa3/8MnO3. Phys. Rev. B 63, 24420-1–24420-7 (2000).

    Article  Google Scholar 

  24. Emery, V. J. & Kivelson, S. A. Frustrated electronic phase separation and high-temperature superconductors. Physica C 209, 597–621 (1993).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Ueda and M. Koyanagi for discussions, and I. Tanaka for providing LSCO single crystals. This work was supported by the CREST program (Core Research for Evolutional Science and Technology) of the Japan Science and Technology Corporation (JST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ienari Iguchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iguchi, I., Yamaguchi, T. & Sugimoto, A. Diamagnetic activity above Tc as a precursor to superconductivity in La2-xSrxCuO4 thin films. Nature 412, 420–423 (2001). https://doi.org/10.1038/35086540

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35086540

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing