Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Crossflow filtration in suspension-feeding fishes

Abstract

Rows of comb-like or tufted gill rakers in the oral cavity of suspension-feeding fishes (for example, herring, anchovies and tilapia) have been thought to serve as (1) non-porous barriers that direct particle-laden water to the sticky oral roof, where particles are retained as water exits from the oral cavity, (2) conventional dead-end filters that sieve particles from water exiting between rakers, or (3) sticky filters that retain particles encountered by a hydrosol filtration mechanism1,2,3,4,5,6. Here we present data from computational fluid dynamics and video endoscopy in suspension-feeding fish indicating that the rakers of three distantly related species function instead as a crossflow filter7,8. Particles are concentrated inside the oral cavity as filtrate exits between the rakers, but particles are not retained on the rakers. Instead, the high-velocity crossflow along the rakers carries particles away from the raker surfaces and transports the particles towards the oesophagus. This crossflow prevents particles from clogging the gaps between the rakers, and solves the mystery of particle transport from the rakers to the oesophagus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Examples of raker morphologies used in the numerical simulations.
Figure 2: The gill rakers of goldfish, gizzard shad and ngege tilapia do not function as a dead-end sieve or as a sticky filter.
Figure 3: During crossflow filtration, the fluid to be filtered is pumped along the surface of the filter as filtrate exits through the filter pores.

Similar content being viewed by others

References

  1. Kardong, K. V. Vertebrates: Comparative Anatomy, Function, Evolution 2nd edn (McGraw-Hill, Boston, 1998).

    Google Scholar 

  2. Gerking, S. D. Feeding Ecology of Fish (Academic, San Diego, 1994).

    Google Scholar 

  3. Vogel, S. Life in Moving Fluids: The Physical Biology of Flow 2nd edn (Princeton Univ. Press, Princeton, 1994).

    Google Scholar 

  4. Hoogenboezem, W. et al. A new model of particle retention and branchial sieve adjustment in filter-feeding bream (Abramis brama, Cyprinidae). Can. J. Fish. Aquat. Sci. 48, 7–18 (1991).

    Article  Google Scholar 

  5. Sanderson, S. L. et al. Mucus entrapment of particles by a suspension-feeding tilapia (Pisces: Cichlidae). J. Exp. Biol. 199, 1743–1756 (1996).

    Article  CAS  Google Scholar 

  6. Sanderson, S. L., Cech, J. J. Jr & Patterson, M. R. Fluid dynamics in suspension-feeding blackfish. Science 251, 1346–1348 (1991).

    Article  ADS  CAS  Google Scholar 

  7. Belfort, G., Davis, R. H. & Zydney, A. L. The behavior of suspensions and macromolecular solutions in crossflow microfiltration. J. Membr. Sci. 96, 1–58 (1994).

    Article  CAS  Google Scholar 

  8. Zeman, L. J. & Zydney, A. L. Microfiltration and Ultrafiltration: Principles and Applications (Dekker, New York, 1996).

    Google Scholar 

  9. Cheer, A. Y. L. & Koehl, M. A. R. Paddles and rakes: fluid flow through bristled appendages of small organisms. J. Theor. Biol. 129, 17–39 (1987).

    Article  ADS  Google Scholar 

  10. Koehl, M. A. R. in Biological Fluid Dynamics, Soc. Exp. Biol. Symp. Vol. 49 (eds Ellington, C. P. & Pedley, T. J.) 157–182 (Company of Biologists, London, 1995).

    Google Scholar 

  11. Sanderson, S. L. & Cheer, A. Y. in Fluid Dynamics in Biology (eds Cheer, A. Y. & van Dam, C. P.) 135–160 (American Mathematical Society, Providence, 1993).

    Book  Google Scholar 

  12. Shimeta, J. & Jumars, P. A. Physical mechanisms and rates of particle capture by suspension-feeders. Oceanogr. Mar. Biol. Annu. Rev. 29, 191–257 (1991).

    Google Scholar 

  13. LaBarbera, M. Feeding currents and particle capture mechanisms in suspension feeding animals. Am. Zool. 24, 71–84 (1984).

    Article  Google Scholar 

  14. Goodrich, J. S., Sanderson, S. L., Batjakas, I. E. & Kaufman, L. S. Branchial arches of suspension-feeding Oreochromis esculentus: sieve or sticky filter? J. Fish Biol. 56, 858–875 (2000).

    Article  Google Scholar 

  15. Li, H., Fane, A. G., Coster, H. G. L. & Vigneswaran, S. Direct observation of particle deposition on the membrane surface during crossflow microfiltration. J. Membr. Sci. 149, 83–97 (1998).

    Article  CAS  Google Scholar 

  16. Chellam, S. & Wiesner, M. R. Particle back-transport and permeate flux behavior in crossflow membrane filters. Environ. Sci. Technol. 31, 819–824 (1997).

    Article  ADS  CAS  Google Scholar 

  17. Wiesner, M. R. Morphology of particle deposits. J. Environ. Eng. 125, 1124–1132 (1999).

    Article  CAS  Google Scholar 

  18. Porter, M. C. Concentration polarization with membrane ultrafiltration. Ind. Eng. Chem. Prod. Res. Develop. 11, 234–248 (1972).

    CAS  Google Scholar 

  19. Green, G. & Belfort, G. Fouling of ultrafiltration membranes: lateral migration and the particle trajectory model. Desalination 35, 129–147 (1980).

    Article  CAS  Google Scholar 

  20. Sethi, S. & Wiesner, M. R. Modeling of transient permeate flux in cross-flow membrane filtration incorporating multiple particle transport mechanisms. J. Membr. Sci. 136, 191–205 (1997).

    Article  CAS  Google Scholar 

  21. Tardieu, E., Grasmick, A., Geaugey, V. & Manem, J. Hydrodynamic control of bioparticle deposition in a MBR applied to wastewater treatment. J. Membr. Sci. 147, 1–12 (1998).

    Article  CAS  Google Scholar 

  22. Bowen, W. R. & Jenner, F. Theoretical descriptions of membrane filtration of colloids and fine particles: an assessment and review. Adv. Colloid Interface Sci. 56, 141–200 (1995).

    Article  CAS  Google Scholar 

  23. Drew, D. A., Schonberg, J. A. & Belfort, G. Lateral inertial migration of a small sphere in fast laminar flow through a membrane duct. Chem. Eng. Sci. 46, 3219–3224 (1991).

    Article  CAS  Google Scholar 

  24. Lauder, G. V. The suction feeding mechanism in sunfishes (Lepomis): an experimental analysis. J. Exp. Biol. 88, 49–72 (1980).

    Article  Google Scholar 

  25. Norton, S. F. & Brainerd, E. L. Convergence in the feeding mechanics of ecomorphologically similar species in the Centrarchidae and Cichlidae. J. Exp. Biol. 176, 11–29 (1993).

    Article  Google Scholar 

  26. Cheryan, M. Ultrafiltration and Microfiltration Handbook (Technomic, Lancaster, 1998).

    Book  Google Scholar 

  27. Mummert, J. R. & Drenner, R. W. Effect of fish size on the filtering efficiency and selective particle ingestion of a filter-feeding clupeid. Trans. Am. Fish. Soc. 115, 522–528 (1986).

    Article  Google Scholar 

  28. Langeland, A. & Nøst, T. Gill raker structure and selective predation on zooplankton by particulate feeding fish. J. Fish Biol. 47, 719–732 (1995).

    Article  Google Scholar 

  29. Gibson, R. N. Development, morphometry and particle retention capability of the gill rakers in the herring, Clupea harengus L. J. Fish Biol. 32, 949–962 (1988).

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to J. Perkins, S. Yu, J. Wagner, S. Leman, J. Yang, C. Chesnutt and B. Rourke for assistance with data collection and analysis; G. Belfort, E. L. Brainerd, M. Patterson and M. Wiesner for comments on the manuscript; H. Austin, P. Geer, J. Goins, T. Mathes, J. Owens, M. Roberts, P. Sadler, Z. Stroud, J. Viehweg and M. A. Vogelbein for assistance in specimen collection and care; B. Bunting and H. Burrell for figure preparation; and K. Wiencek for technical advice. This work was supported by grants from the NSF (S.L.S., A.Y.C.) and the US Department of Energy (A.Y.C.), corporate gifts from Eastman Kodak Company and Peak Performance Technologies (S.L.S.), and research leave from the College of William and Mary (S.L.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Laurie Sanderson.

Supplementary information

Figure 1

(JPG 83.7 KB)

Figure 2

(JPG 64.3 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanderson, S., Cheer, A., Goodrich, J. et al. Crossflow filtration in suspension-feeding fishes. Nature 412, 439–441 (2001). https://doi.org/10.1038/35086574

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35086574

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing