Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mars' volatile and climate history

Abstract

There is substantial evidence that the martian volatile inventory and climate have changed markedly throughout the planet's history. Clues come from areas as disparate as the history and properties of the deep interior, the composition of the crust and regolith, the morphology of the surface, composition of the present-day atmosphere, and the nature of the interactions between the upper atmosphere and the solar wind. We piece together the relevant observations into a coherent view of the evolution of the martian climate, focusing in particular on the observations that provide the strongest constraints.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram showing the interconnected nature of the martian climate system and the relationship between climate and various processes from the deep interior to the upper atmosphere.
Figure 2: Schematic diagram showing the time history of the martian volatile system.
Figure 3: Topography98 of Tharsis rise and Tharsis trough28.
Figure 4: Comparison of martian magnetic field, topography and valley network locations.
Figure 5: View of topography (from ref. 98) looking towards the southeast in Margaritifer Sinus region.

Similar content being viewed by others

References

  1. Owen, T. in Mars (eds Kieffer, H. H., Jakosky, B. M., Snyder C. W. & Matthews, M. S.) 818–834 (Univ. Arizona Press, Tucson, 1992).

    Google Scholar 

  2. Jakosky, B. M. & Haberle, R. M. in Mars (eds Kieffer, H. H., Jakosky, B. M., Snyder C. W. & Matthews, M. S.) 969–1016 (Univ. Arizona Press, Tucson, 1992).

    Google Scholar 

  3. Brass, G. W. Stability of brines on Mars. Icarus 42, 20–28 (1980).

    Article  ADS  CAS  Google Scholar 

  4. Kieffer, H. H. & Zent, A. P. in Mars (eds Kieffer, H. H., Jakosky, B. M., Snyder C. W. & Matthews, M. S.) 1180–1218 (Univ. Arizona Press, Tucson, 1992).

    Google Scholar 

  5. Ward, W. R. Climatic variations on Mars. I. Astronomical theory of insolation. J. Geophys. Res. 79, 3375–3386 (1974).

    Article  ADS  Google Scholar 

  6. Touma, J. & Wisdom, J. The chaotic obliquity of Mars. Science 259, 1294–1297 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Jakosky, B. M., Henderson, B. G. & Mellon, M. T. Chaotic obliquity and the nature of the martian climate. J. Geophys. Res. 100, 1579–1584 (1995).

    Article  ADS  CAS  Google Scholar 

  8. Hartmann, W. K. et al. in Basaltic Volcanism on the Terrestrial Planets (eds Basaltic Volcanism Study Project) 1049–1127 (Pergamon, New York, 1981).

    Google Scholar 

  9. Tanaka, K. L. The stratigraphy of Mars. J. Geophys. Res. 91, E139–E158 (1986).

    Article  ADS  Google Scholar 

  10. Hartmann, W. K. & Berman, D. C. Elysium Planitia lava flows: crater count chronology and geological implications. J. Geophys. Res. 105, 15011–15025 (2000).

    Article  ADS  Google Scholar 

  11. Hartmann, W. K. & Neukum, G. Cratering chronology and the evolution of Mars. Space Sci. Rev. (in the press).

  12. Pepin, R. O. Evolution of the martian atmosphere. Icarus 111, 289–304 (1994).

    Article  ADS  CAS  Google Scholar 

  13. Carr, M. H. & Clow, G. D. Martian channels and valleys: their characteristics, distribution, and age. Icarus 48, 91–117 (1981).

    Article  ADS  Google Scholar 

  14. Carr, M. H. & Malin, M. C. Meter-scale characteristics of martian channels and valleys. Icarus 146, 366–386 (2000).

    Article  ADS  Google Scholar 

  15. Carr, M. H. & Chuang, F. C. Martian drainage densities. J. Geophys. Res. 102, 9145–9152 (1997).

    Article  ADS  Google Scholar 

  16. Tanaka, K. L., Dohm, J. M., Lias, J. H. & Hare, T. M. Erosional valleys in the Thaumasia region of Mars: hydrothermal and seismic origins. J. Geophys. Res. 103, 31407–31419 (1998).

    Article  ADS  Google Scholar 

  17. Carr, M. H. Water on Mars (Oxford Univ. Press, New York, 1996).

    Google Scholar 

  18. Chapman, C. R. & Jones, K. L. Cratering and obliteration history of Mars. Annu. Rev. Earth Planet. Sci. 5, 515–540 (1977).

    Article  ADS  Google Scholar 

  19. Craddock, R. A. & Maxwell, T. A. Geomorphic evolution of the martian highlands through ancient fluvial processes. J. Geophys. Res. 98, 3453–3468 (1993).

    Article  ADS  Google Scholar 

  20. Craddock, R. A., Maxwell, T. A. & Howard, A. D. Crater morphometry and modification in the Sinus Sabaeus and Margaritifer Sinus regions of Mars. J. Geophys. Res. 102, 13321–13340 (1997).

    Article  ADS  Google Scholar 

  21. Golombek, M. P. & Bridges, N. T. Erosion rates on Mars and implications for climate change: constraints from the Pathfinder landing site. J. Geophys. Res. 105, 1841–1853 (2000).

    Article  ADS  Google Scholar 

  22. Baker, V. R. & Partridge, J. Small martian valleys: pristine and degraded morphology. J. Geophys. Res. 91, 3561–3572 (1986).

    Article  ADS  Google Scholar 

  23. Pollack, J. B., Kasting, J. F., Richardson, S. M. & Poliakoff, K. The case for a warm, wet climate on early Mars. Icarus 71, 203–224 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Squyres, S. W. & Kasting, J. F. Early Mars: how warm and how wet? Science 265, 744–749 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Kasting, J. F. CO2 condensation and the climate of early Mars. Icarus 94, 1–13 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Forget, F. & Pierrehumbert, R. T. Warming early Mars with carbon dioxide clouds that scatter infrared radiation. Science 278, 1273–1276 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Mischna, M. A., Kasting, J. F., Pavlov, A. & Freedman, R. Influence of carbon dioxide clouds on early martian climate. Icarus 145, 546–554 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Phillips, R. J. et al. Ancient geodynamics and global-scale hydrology on Mars. Science 291, 2587–2591 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Anderson, R. C. et al. Primary centers and secondary concentrations of tectonic activity through time in the western hemisphere of Mars. J. Geophys. Res. (in the press).

  30. McSween, H. J. Jr et al. Geochemical evidence for magmatic water within mars from pyroxenes in the Shergotty meteorite. Nature 409, 487–490 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Parker, T. J., Clifford, S. M. & Banerdt, W. B. Argyre Planitia and the Mars global hydrologic cycle. Lunar Planet. Sci. Conf. XXXI, Abstr. 2033 〈http://www.lpi.usra.edu/meetings/lpsc2000/pdf/2033.pdf〉 (2000).

  32. Baker, V. R. The Channels of Mars 198 p (Univ. Texas Press, Austin, TX, 1982).

    Google Scholar 

  33. Jakosky, B. M. & Phillips, R. J. Water the many mysteries of Mars? (Abstr.) Am. Geophys. Union Fall meeting, San Francisco 〈http://www.agu.org/meetings/waisfm00.html〉 (2000).

  34. Acuña, M. H. et al. Global distribution of crustal magnetism discovered by the Mars Global Surveyor MAG/ER experiment. Science 284, 790–793 (1999).

    Article  ADS  PubMed  Google Scholar 

  35. Connerney, J. E. P. et al. Magnetic lineations in the ancient crust of Mars. Science 284, 794–798 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Hynek, B. M. & Phillips, R. J. Evidence for extensive denudation of the Martian highlands. Geology 29, 407–410 (2001).

    Article  ADS  Google Scholar 

  37. Harrison, K. P. & Grimm, R. E. Martian hydrothermal systems: relationship between magnetic anomalies and valley networks. Lunar Planet. Sci. Conf. XXXII, Abstr. 1441 〈http://www.lpi.usra.edu/meetings/lpsc2001/pdf/1441.pdf〉 (2001).

  38. Newman, M. J. & Rood, R. T. Implications of solar evolution for the Earth's early atmosphere. Science 198, 1035–1037 (1977).

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Kasting, J. F. & Grinspoon, D. H. in The Sun in Time (eds Sonett, C. P., Giampapa, M. S. & Matthews, M. S.) 447–462 (Univ. Arizona Press, Tucson, 1991).

    Google Scholar 

  40. Haberle, R. M. Early Mars climate models. J. Geophys. Res. 103, 28467–28479 (1998).

    Article  ADS  CAS  Google Scholar 

  41. Melosh, H. J. & Vickery, A. M. Impact erosion of the primordial atmosphere of Mars. Nature 338, 487–489 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Brain, D. A. & Jakosky, B. M. Atmospheric loss since the onset of the martian geologic record: combined role of impact erosion and sputtering. J. Geophys. Res. 103, 22689–22694 (1998).

    Article  ADS  CAS  Google Scholar 

  43. Frey, H. V., Shockey, K. M., Frey, E. L., Roark, J. H. & Sakimoto, S. E. H. A very large population of likely buried impact basins in the northern lowlands of Mars revealed by MOLA data. Lunar Planet. Sci. Conf. XXXII, Abstr. 1680 〈http://www.lpi.usra.edu/meetings/lpsc2001/pdf/1680.pdf〉 (2001).

  44. Chyba, C. F., Owen, T. C. & Ip, W. H. in Hazards Due to Comets and Asteroids (ed. Gehrels, T.) 9–58 (Univ. Arizona Press, Tucson, 1994).

    Google Scholar 

  45. Owen, T. & Bar-Nun, A. Comets, impacts, and atmospheres. Icarus 116, 215–226 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  46. Luhmann, J. G., Johnson, R. E. & Zhang, M. H. G. Evolutionary impact of sputtering of the martian atmosphere by O+ pickup ions. Geophys. Res. Lett. 19, 2151–2154 (1992).

    Article  ADS  CAS  Google Scholar 

  47. Mitchell, D. L. et al. Crustal magnetocylinders at Mars. (Abstr.) Am. Geophys. Union Spring meeting 〈http://www.agu.org/meetings/waissm00.html〉 (2000).

  48. Ayres, T. R. Evolution of the solar ionizing flux. J. Geophys. Res. 102, 1641–1651 (1997).

    Article  ADS  CAS  Google Scholar 

  49. McElroy, M. B. & Yung, Y. L. Oxygen isotopes in the martian atmosphere: implications for the evolution of volatiles. Planet. Space Sci. 24, 1107–1113 (1976).

    Article  ADS  CAS  Google Scholar 

  50. Jakosky, B. M., Pepin, R. O., Johnson, R. E. & Fox, J. L. Mars atmospheric loss and isotopic fractionation by solar-wind-induced sputtering and photochemical escape. Icarus 111, 271–288 (1994).

    Article  ADS  CAS  Google Scholar 

  51. Hutchins, K. S. & Jakosky, B. M. Evolution of martian atmospheric argon: implications for sources of volatiles. J. Geophys. Res. 101, 14933–14949 (1996).

    Article  ADS  CAS  Google Scholar 

  52. Owen, T., Maillard, J. P., deBergh, C. & Lutz, B. L. Deuterium on Mars: the abundance of HDO and the value of D/H. Science 240, 1767–1770 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  53. Bjoraker, G. L., Mumma, M. J. & Larson, H. P. Isotopic abundance ratios for hydrogen and oxygen in the martian atmosphere. Bull. Am. Astron. Soc. 21, 991 (1989).

  54. Krasnopolsky, V. A., Bjoraker, G. L., Mumma, M. J. & Jennings, D. E. High-resolution spectroscopy of Mars at 3.7 and 8 μm: a sensitive search for H2O2, H2CO, HCl, and CH4, and detection of HDO. J. Geophys. Res. 102, 6525–6534 (1997).

    Article  ADS  CAS  Google Scholar 

  55. Liu, S. C. & Donahue, T. M. The regulation of hydrogen and oxygen escape from Mars. Icarus 28, 231–246 (1976).

    Article  ADS  CAS  Google Scholar 

  56. Yung, Y. L. et al. HDO in the martian atmosphere: implications for the abundance of crustal water. Icarus 76, 146–159 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  57. Leshin, L. A. Insights into martian water reservoirs from analyses of martian meteorite QUE94201. Geophys. Res. Lett. 27, 2017–2020 (2000).

    Article  ADS  CAS  Google Scholar 

  58. Krasnopolsky, V. On the deuterium abundance on Mars and some related problems. Icarus 148, 597–602 (2000).

    Article  ADS  CAS  Google Scholar 

  59. Jakosky, B. M. & Leshin, L. A. Mars D/H: implications for volatile evolution and climate history. (Abstr.) Am. Geophys. Union Spring meeting, Boston 〈http://www.agu.org/meetings/waissm01.html〉 (2001).

  60. Donahue, T. M. Evolution of water reservoirs on Mars from D/H ratios in the atmosphere and crust. Nature 374, 432–434 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  61. Gooding, J. L., Wentworth, S. J. & Zolensky, M. E. Calcium carbonate and sulfate of possible extraterrestrial origin in the EETA 79001 meteorite. Geochim. Cosmochim. Acta 52, 909–915 (1988).

    Article  ADS  CAS  Google Scholar 

  62. Romanek, C. S. et al. Record of fluid-rock interactions on Mars from the meteorite ALH84001. Nature 372, 655–657 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  63. Treiman, A. H., Barrett, R. A. & Gooding, J. L. Preterrestrial alteration of the Lafayette (SNC) meteorite. Meteoritics 28, 86–97 (1993).

    Article  ADS  CAS  Google Scholar 

  64. Pollack. J. B. et al. Thermal emission spectra of Mars (5.4-10.5 μm): evidence for sulfates, carbonates, and hydrates. J. Geophys. Res. 95, 14595–14627 (1990).

    Article  ADS  Google Scholar 

  65. Christensen, P. R. et al. Mars Global Surveyor Thermal Emission Spectrometer experiment: investigation, description and surface science results. J. Geophys. Res. (in the press).

  66. Marti, K. & Mathew, K. J. Ancient martian nitrogen. Geophys. Res. Lett. 27, 1463–1466 (2000).

    Article  ADS  CAS  Google Scholar 

  67. Mathew, K. J. & Marti, K. Early evolution of martian volatiles: nitrogen and noble gas components in ALH84001 and Chassigny. J. Geophys. Res. 106, 1401–1422 (2001).

    Article  ADS  CAS  Google Scholar 

  68. Turner, G., Knott, S. F., Ash, R. D. & Gilmour, J. D. Ar-Ar chronology of the martian meteorite ALH84001: evidence for the timing of the early bombardment of Mars. Geochim. Cosmochim. Acta 61, 3835–3850 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  69. Hutchins, K. S., Jakosky, B. M. & Luhmann, J. G. Impact of a paleo-magnetic field on sputtering loss of martian atmospheric argon and neon. J. Geophys. Res. 102, 9183–9189 (1997).

    Article  ADS  CAS  Google Scholar 

  70. Schubert, G., Russell, C. T. & Moore, W. B. Timing of the martian dynamo. Nature 408, 666–667 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  71. Weiss, B. P. et al. Records of an ancient Martian magnetic field in ALH84001. Lunar Planet. Sci. Conf. XXXII, Abstr. 1244 〈http://www.lpi.usra.edu/meetings/lpsc2001/pdf/1244.pdf〉 (2001).

  72. Carr, M. H. H. Formation of martian flood features by release of water from confined aquifers. J. Geophys. Res. 84, 2995–3007 (1979).

    Article  ADS  Google Scholar 

  73. Hoffman, N. White Mars: a new model for Mars' surface and atmosphere based on CO2 . Icarus 146, 326–342 (2000).

    Article  ADS  CAS  Google Scholar 

  74. Lucchitta, B. K. Antarctic ice streams and outflow channels on Mars. Geophys. Res. Lett. 28, 403–406 (2001).

    Article  ADS  Google Scholar 

  75. Tanaka, K. L. Debris flow origin for the Simud/Tiu deposit on Mars. J. Geophys. Res. 104, 8637–8652 (1999).

    Article  ADS  Google Scholar 

  76. Carr, M. H. Mars: a water-rich planet? Icarus 68, 187–216 (1986).

    Article  ADS  CAS  Google Scholar 

  77. Watson, L. L., Hutcheon, I. D., Epstein, S. & Stolper, E. M. Water on Mars: clues from deuterium/hydrogen and water contents of hydrous phases in SNC meteorites. Science 265, 86–90 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  78. Jakosky, B. M. & Jones, J. H. The history of martian volatiles. Rev. Geophys. 35, 1–16 (1997).

    Article  ADS  CAS  Google Scholar 

  79. McSween, H. Y. Jr SNC Meteorites: clues to martian petrologic evolution? Rev. Geophys. 23, 391–416 (1985).

    Article  ADS  CAS  Google Scholar 

  80. McSween, H. Y. Jr What we have learned about Mars from SNC meteorites. Meteoritics 29, 757–779 (1994).

    Article  ADS  CAS  Google Scholar 

  81. Swindle, T. D. et al. Noble gases in iddingsite from the Lafayette meteorite: evidence for liquid water on Mars in the last few hundred million years. Meteoritics Planet. Sci. 35, 107–115 (2000).

    Article  ADS  CAS  Google Scholar 

  82. Christensen, P. R. et al. Detection of crystalline hematite mineralization on Mars by the Thermal Emission Spectrometer: evidence for near-surface water. J. Geophys. Res. 105, 9623–9642 (2000).

    Article  ADS  CAS  Google Scholar 

  83. Tanaka, K., Chapman, M., Johnson, J. & Titus, T. Examination of igneous alternatives to Martian hematite using terrestrial analogs. GSA Abstr. Programs 32(7), Abstr. 52142 (2000).

  84. Malin, M. C. & Edgett, K. S. Evidence for recent ground water seepage and surface runoff on Mars. Science 288, 2330–2335 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  85. Musselwhite, D. S., Swindle, T. D. & Lunine, J. I. Liquid CO2 breakout and the formation of recent small gullies on Mars. Geophys. Res. Lett. 28, 1283–1285 (2001).

    Article  ADS  CAS  Google Scholar 

  86. Stewart, S. T. & Nimmo, F. Surface runoff features on Mars: testing the carbon dioxide formation hypothesis. J. Geophys. Res. (submitted).

  87. Mellon, M. T. & Phillips, R. J. Recent gullies on Mars and the source of liquid water. J. Geophys. Res. (in the press).

  88. Cabrol, N. A. & Grin, E. A. Distribution, classification, and ages of martian impact crater lakes. Icarus 142, 160–172 (1999).

    Article  ADS  Google Scholar 

  89. Malin, M. C. & Edgett, K. S. Sedimentary rocks of early Mars. Science 290, 1927–1937 (2001).

    Article  ADS  Google Scholar 

  90. Parker, T. S., Saunders, R. S. & Schneeberger, D. M. Transitional morphology in the west Deuteronilus Mensae region of Mars: implications for modification of the lowland/upland boundary. Icarus 82, 111–145 (1989).

    Article  ADS  Google Scholar 

  91. Parker, T. J., Gorsline, D. S., Saunders, R. S., Pieri, D. & Schneeberger, D. M. Coastal geomorphology of the martian northern plains. J. Geophys. Res. 98, 11061–11078 (1993).

    Article  ADS  Google Scholar 

  92. Head, J. W. et al. Possible ancient oceans on Mars: evidence from Mars Orbiter Laser Altimeter. Science 286, 2134–2137 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  93. Head, J. W. III et al. Oceans in the past history of Mars: tests for their presence using Mars Orbiter Laser Altimeter (MOLA) data. Geophys. Res. Lett. 25, 4401–4404 (1998).

    Article  ADS  Google Scholar 

  94. Malin, M. C. & Edgett, K. S. Oceans or seas in the martian northern lowlands: high-resolution imaging tests of proposed coastlines. Geophys. Res. Lett. 26, 3049–3052 (1999).

    Article  ADS  Google Scholar 

  95. Withers, P. & Neumann, G. A. Enigmatic northern plains of Mars. Nature 410, 651 (2001).

  96. Scott, D. H. & Tanaka, K. L. Geologic map of the western equatorial region of Mars. US Geol. Surv. Map I-1802-A (1986).

  97. Aharonson, O., Zuber, M. T., Neumann, G. A. & Head, J. W. Mars: northern hemisphere slopes and slope distributions. Geophys. Res. Lett. 25, 4413–4416 (1998).

    Article  ADS  Google Scholar 

  98. Smith, D. E. et al. The global topography of Mars and implications for surface evolution. Science 284, 1495–1503 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  99. Head, J. W., Kreslavsky, M. A. & Pratt, S. Northern lowlands on Mars: evidence for widespread volcanic flooding and tectonic deformation in the Early Hesperian. Lunar Planet. Sci. Conf. XXXII, Abstr. 1063 〈http://www.lpi.usra.edu/meetings/lpsc2001/pdf/1063.pdf〉 (2001).

  100. Komar, P. D. Modes of sediment transport in channelized water flows with ramifications to the erosion of the martian outflow channels. Icarus 42, 317–329 (1980).

    Article  ADS  Google Scholar 

  101. Zuber, M. T. et al. Internal structure and early thermal evolution of Mars from Mars Global Surveyor topography and gravity. Science 287, 1788–1793 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  102. Pechmann, J. C. The origin of polygonal troughs on the northern plains of Mars. Icarus 42, 185–210 (1980).

    Article  ADS  Google Scholar 

  103. Hiesinger, H. & Head, J. W. Characteristics and origin of polygonal terrain in southern Utopia Planitia, Mars: results from Mars Orbiter Laser Altimeter and Mars Orbiter Camera data. J. Geophys. Res. 105, 11999–12022 (2000).

    Article  ADS  Google Scholar 

  104. Lane, M. D. & Christensen, P. R. Convection in a catastrophic flood deposit as the mechanism for the giant polygons on Mars. J. Geophys. Res. 105, 17617–17627 (2000).

    Article  ADS  Google Scholar 

  105. Greeley, R. & The Mars Exploration Payload Advisory Group. Mars Exploration Program: Scientific Goals, Objectives, Investigations, and Priorities (Jet Propulsion Laboratory Publication, in the press).

  106. Purucker, M. et al. An altitude-normalized magnetic map of Mars and its interpretation. Geophys. Res. Lett. 27, 2449–2452 (2000).

    Article  ADS  CAS  Google Scholar 

  107. Goldspiel, J. M. & Squyres, S. W. Ancient aqueous sedimentation on Mars. Icarus 89, 392–410 (1991).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Leovy, S. Stewart, L. Leshin, M. Mellon, H. Frey, P. Withers, B. Hynek, K. Harrison, W. Hartmann and the MOLA science team for valuable discussions and for providing preprints of their manuscripts. We also thank J. Head, R. Haberle and C. Leovy for detailed reviews of our manuscript. This research was supported by the Mars Global Surveyor Project and the NASA Planetary Geology and Geophysics Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bruce M. Jakosky or Roger J. Phillips.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jakosky, B., Phillips, R. Mars' volatile and climate history. Nature 412, 237–244 (2001). https://doi.org/10.1038/35084184

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35084184

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing