Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Evidence for non-selective preservation of organic matter in sinking marine particles

Abstract

The sinking of particulate organic matter from ocean surface waters transports carbon to the ocean interior1,2, where almost all is then recycled. The unrecycled fraction of this organic matter can become buried in ocean sediments, thus sequestering carbon and so influencing atmospheric carbon dioxide concentrations3. The processes controlling the extensive biodegradation of sinking particles remain unclear, partly because of the difficulty in resolving the composition of the residual organic matter at depth with existing chromatographic techniques4. Here, using solid-state 13C NMR spectroscopy5, we characterize the chemical structure of organic carbon in both surface plankton and sinking particulate matter from the Pacific Ocean4 and the Arabian Sea6. We found that minimal changes occur in bulk organic composition, despite extensive (>98%) biodegradation, and that amino-acid-like material predominates throughout the water column in both regions. The compositional similarity between phytoplankton biomass and the small remnant of organic matter reaching the ocean interior indicates that the formation of unusual biochemicals, either by chemical recombination7 or microbial biosynthesis8, is not the main process controlling the preservation of particulate organic carbon within the water column at these two sites. We suggest instead that organic matter might be protected from degradation by the inorganic matrix of sinking particles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Solid-state 13C NMR spectra of material from the equatorial Pacific Ocean and the Arabian Sea.
Figure 2: Calculated weight percentages of biochemicals in the samples from the equatorial Pacific Ocean and the Arabian Sea.

Similar content being viewed by others

References

  1. Broecker, W. S. & Peng, T.-H. Tracers in the Sea (Lamont-Doherty, Palisades, New York, 1982).

    Google Scholar 

  2. Siegenthaler, U. & Sarmiento, J. L. Atmospheric carbon dioxide and the ocean. Nature 365, 119–125 (1993).

    Article  ADS  CAS  Google Scholar 

  3. Sarmiento, J. L. & Toggweiler, J. R. A new model for the role of the oceans in determining atmospheric pCO2. Nature 308, 621–624 (1984).

    Article  ADS  CAS  Google Scholar 

  4. Wakeham, S. G., Lee, C., Hedges, J. I., Hernes, P. J. & Peterson, M. L. Molecular indicators of diagenetic status in marine organic matter. Geochim. Cosmochim. Acta 61, 5363–5369 (1997).

    Article  ADS  CAS  Google Scholar 

  5. Wilson, M. A. NMR Techniques and Applications in Geochemistry and Soil Chemistry (Pergamon, Oxford, 1987).

    Google Scholar 

  6. Lee, C. et al. Particulate organic carbon fluxes: compilation of results from the 1995 US JGOFS Arabian Sea Process Study. Deep-Sea Res. 45, 2489–2501 (1998).

    Article  ADS  CAS  Google Scholar 

  7. Stevenson, F. J. Humus Chemistry (Wiley, New York, 1994).

    Google Scholar 

  8. Hatcher, P. G., Spiker, E. C., Szeverenyi, N. M. & Maciel, G. E. Selective preservation and origin of petroleum-forming aquatic kerogen. Nature 305, 498–501 (1983).

    Article  ADS  CAS  Google Scholar 

  9. Martin, J. H., Knauer, G. A., Karl, D. M. & Broenkow, W. W. VERTEX: carbon cycling in the northeast Pacific. Deep-Sea Res. 34, 267–285 (1987).

    Article  ADS  CAS  Google Scholar 

  10. Armstrong, R. A., Lee, C., Hedges, J. I., Honjo, S. & Wakeham, S. G. A new model for deep-ocean remineralization of organic carbon and mineral ballasts. Deep-Sea Res. (in the press).

  11. Hedges, J. I. et al. The molecularly uncharacterized component of nonliving organic matter in natural environments. Org. Geochem. 31, 945–958 (2000).

    Article  CAS  Google Scholar 

  12. Boyd, P. W. & Newton, P. P. Does plankton community structure determine downward particulate organic carbon flux in different oceanic provinces? Deep-Sea Res. 46, 63–91 (1999).

    Article  CAS  Google Scholar 

  13. De Leeuw, J. W. & Largeau, C. in Organic Geochemistry (eds Engel, M. & Macko, S. A.) 23–72 (Plenum, New York, 1993).

    Book  Google Scholar 

  14. Knicker, H., Scaroni, A. W. & Hatcher, P. G. 13C and 15N NMR spectroscopic investigation on the formation of fossil algal residues. Org. Geochem. 24, 661–669 (1996).

    Article  CAS  Google Scholar 

  15. Hernes, P. J. et al. Particulate carbon and nitrogen fluxes and compositions in the central Equatorial Pacific. Deep-Sea Res. (in the press).

  16. Murray, J. W., Barber, R. T., Roman, M. R., Bacon, M. P. & Feely, R. A. Physical and biological controls on carbon cycling in the equatorial Pacific. Science 266, 58–65 (1994).

    Article  ADS  CAS  Google Scholar 

  17. Smith, S. L., Codispoti, L. A. & Morrison, J. M. The USJGOFS process study in the Arabian Sea: Introduction. Deep-Sea Res. 45, 2053–2101 (1998).

    Article  ADS  Google Scholar 

  18. Honjo, S., Dymond, J., Prell, W. & Ittekkot, V. Monsoon-controlled export fluxes to the interior of the Arabian Sea. Deep-Sea Res. 46, 1859–1902 (1999).

    ADS  CAS  Google Scholar 

  19. Kinchesh, P., Powlson, D. S. & Randall, E. W. 13C NMR studies of organic matter in whole soils: 1. Quantitation possibilities. Eur. J. Soil Sci. 46, 125–138 (1995).

    Article  CAS  Google Scholar 

  20. Baldock, J. A. & Nelson, P. N. in Handbook of Soil Science (eds Sumner, M. E. et al.) B25–B84 (CRC, Boca Raton, 2000).

    Google Scholar 

  21. Nelson, P. N., Baldock, J. A., Oades, J. M. & Churchman, G. J. Dispersed clay and organic matter in soil: their nature and associations. Aust. J. Soil Res. 37, 289–315 (1999).

    Article  Google Scholar 

  22. McCarthy, M., Pratum, T., Hedges, J. & Benner, R. Chemical composition of dissolved organic nitrogen in the ocean. Nature 390, 150–154 (1997).

    Article  ADS  CAS  Google Scholar 

  23. Laws, E. A. Photosynthetic quotients, new production and net community production in the open ocean. Deep-Sea Res. 38, 143–167 (1991).

    Article  ADS  CAS  Google Scholar 

  24. Anderson, L. A. On the hydrogen and oxygen content of marine phytoplankton. Deep-Sea Res. 38, 143–167 (1995).

    Google Scholar 

  25. Parsons, T. R., Stephens, K. & Strickland, J. D. H. On the chemical composition of eleven species of marine phytoplankters. J. Fish. Res. Bd, Can. 18, 1001–1015 (1961).

    Article  CAS  Google Scholar 

  26. Hedges, J. I. in Humic Substances and Their Role in the Environment (eds Frimmel, F. H. & Christman, R. F.) 45–58 (Dahlem Konferenzen, West Berlin, 1988).

    Google Scholar 

  27. Lee, C., Wakeham, S. G. & Hedges, J. I. Composition and flux of particulate amino acids and pigments in equatorial Pacific seawater and sediments. Deep-Sea Res. 47, 1535–1568 (2000).

    Article  CAS  Google Scholar 

  28. Hedges, J. I. & Oades, J. M. Comparative organic geochemistries of soils and marine sediments. Org. Geochem. 27, 319–361 (1997).

    Article  CAS  Google Scholar 

  29. Bishop, J. K. B., Edmond, J. M., Ketten, D. R., Bacon, M. P. & Silker, W. B. The chemistry, biology, and vertical flux of particulate matter from the upper 400m of the equatorial Atlantic Ocean. Deep-Sea Res. 24, 511–548 (1977).

    Article  ADS  CAS  Google Scholar 

  30. Ittekkot, V., Haake, B., Bartsch, M., Nair, R. R. & Ramaswamy, V. in Upwelling Systems: Evolution since the Miocene (eds Summerhayes, C. P., Prell, W. L. & Emeis, K. C.) 167–176 (Special Publication No. 64, Geological Society, London, 1992).

    Google Scholar 

  31. Cowie, G. L. & Hedges, J. I. Sources and reactivities of amino acids in a coastal marine environment. Limnol. Oceanogr. 37, 703–724 (1992).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Hernes, B. Bergamaschi, J. Murray, J. Dymond and the captain and crew of the RV Thomas G. Thompson for support during the cruises; S. Honjo and J. Dymond (and field groups) for accommodating our sediment traps on their moorings; and A. Aufdenkampe, R. Benner and B. van Mooy for comments that significantly improved the manuscript. This work was supported by the NSF (J.H., C.L. and S.W.); Y.G. thanks the Canadian Natural Sciences and Engineering Research Council (NSERC) for a post-doctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John I. Hedges.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hedges, J., Baldock, J., Gélinas, Y. et al. Evidence for non-selective preservation of organic matter in sinking marine particles. Nature 409, 801–804 (2001). https://doi.org/10.1038/35057247

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35057247

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing