Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Internal structure of a cold dark molecular cloud inferred from the extinction of background starlight

Abstract

Stars and planets form within dark molecular clouds, but little is understood about the internal structure of these clouds, and consequently about the initial conditions that give rise to star and planet formation. The clouds are primarily composed of molecular hydrogen, which is virtually inaccessible to direct observation. But the clouds also contain dust, which is well mixed with the gas and which has well understood effects on the transmission of light. Here we use sensitive near-infrared measurements of the light from background stars as it is absorbed and scattered by trace amounts of dust to probe the internal structure of the dark cloud Barnard 68 with unprecedented detail. We find the cloud's density structure to be very well described by the equations for a pressure-confined, self-gravitating isothermal sphere that is critically stable according to the Bonnor–Ebert criteria1,2. As a result we can precisely specify the physical conditions inside a dark cloud on the verge of collapse to form a star.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Visible and near-infrared images of Barnard 68.
Figure 2: Azimuthally averaged radial dust column density profile of Barnard 68.

Similar content being viewed by others

References

  1. Ebert, R. Uber die Verdichtung von HI-Gebieten. Z. Astrophys. 37, 217–232 (1955).

    ADS  MATH  Google Scholar 

  2. Bonnor, W. Boyle's Law and gravitational instability. Mon. Not. R. Astron. Soc. 116, 351–359 ( 1956).

    Article  ADS  MathSciNet  Google Scholar 

  3. Alves, J., Lada, C. & Lada, E. Correlation between gas and dust in molecular clouds: L977. Astrophys. J. 515, 265–274 ( 1999).

    Article  ADS  CAS  Google Scholar 

  4. Chandler, C. & Richer, J. The structure of protostellar envelopes derived from submillimeter continuum images. Astrophys. J. 350, 851–866 (2000).

    Article  ADS  Google Scholar 

  5. Lada, C., Lada, E., Bally, J. & Clemens, D. Dust extinction and molecular gas in the dark cloud IC 5146. Astrophys. J. 429, 694–709 ( 1994).

    Article  ADS  CAS  Google Scholar 

  6. Alves, J., Lada, C. J., Lada, E. A., Kenyon, S. J. & Phelps, R. Dust extinction and molecular cloud structure: L 977. Astrophys. J. 506, 292– 305 (1998).

    Article  ADS  Google Scholar 

  7. Lada, C., Alves, J. & Lada, E. Infrared extinction and the structure of the IC 5146 dark cloud. Astrophys. J. 512, 250–259 (1999).

    Article  ADS  Google Scholar 

  8. Bok, B. & Reilly, E. Small dark nebulae. Astrophys. J. 105, 255–257 ( 1947).

    Article  ADS  Google Scholar 

  9. Clemens, D. & Barvainis, R. A catalog of small, optically selected molecular clouds: optical, infrared, and millimeter properties. Astrophys. J. Suppl. Ser. 68, 257– 286 (1988).

    Article  ADS  CAS  Google Scholar 

  10. de Geus, E., de Zeeuw, P. & Lub, J. Physical parameters of stars in the Scorpius-Centaurus OB association. Astron. Astrophys. 216, 44–61 (1989).

    ADS  Google Scholar 

  11. Bourke, T., Hyland, A., Robinson, G., James, S. & Wright, C. Studies of star formation in isolated small dark clouds—II A southern ammonia survey. Mon. Not. R. Astron. Soc. 276, 1067–1084 (1995).

    ADS  CAS  Google Scholar 

  12. Quigley, M. & Haslam, C. Structure of the radio continuum background at high galactic latitudes. Nature 208, 741–743 (1965).

    Article  ADS  Google Scholar 

  13. Breitschwerdt, D., Freyberg, M. & Egger, R. Origin of H I clouds in the local bubble. Astron. Astrophys. 361, 303–320 (2000).

    ADS  CAS  Google Scholar 

  14. Reipurth, B., Nyman, L. & Chini, R. Protostellar candidates in southern molecular clouds. Astron. Astrophys. 314, 258– 264 (1996).

    ADS  Google Scholar 

  15. Moorwood, A., Cuby, J. & Lidman, C. SOFI sees first light at the NTT. ESO Messenger 91, 9–13 (1998 ).

    ADS  Google Scholar 

  16. Appenzeller, I. et al. Successful commissioning of FORSI—the first optical instrument on the VLT. ESO Messenger 94, 1–6 (1998).

    ADS  Google Scholar 

  17. Mathis, J. Interstellar dust and extinction. Annu. Rev. Astron. Astrophys. 28, 37–70 ( 1990).

    Article  ADS  CAS  Google Scholar 

  18. Bok, B. Centennial Symposia (Harvard Observatory Monographs No. 7, Harvard-College Observatory, Cambridge, 1948).

    Google Scholar 

  19. Lane, J. Am. J. Sci. Arts, Series 2 4, 57 ( 1870).

    ADS  Google Scholar 

  20. Emden, R. Gaskugeln (Teubner, Leipzig, 1907).

    MATH  Google Scholar 

  21. Chandrasekhar, S. in An Introduction to the Study of Stellar Structure 156 (Dover, Toronto, 1967).

    Google Scholar 

  22. Mckee, C. in The Origin of Stars and Planetary Systems (eds Lada, C. & Kylafis, N.) 29–66 (Kluwer, Dordrecht, 1999).

    Book  Google Scholar 

  23. Nakano, T. Quasistatic contraction of magnetic protostars due to magnetic flux leakage—Part One—formulation and an example. Publ. Astron. Soc. Jpn 31, 697–712 (1979).

    ADS  Google Scholar 

  24. Lizano, S. & Shu, F. Molecular cloud cores and bimodal star formation. Astrophys. J. 342, 834– 854 (1989).

    Article  ADS  Google Scholar 

  25. Basu, S. & Mouschovias, T. Magnetic braking, ambipolar diffusion, and the formation of cloud cores and protostars I—Axisymmetric solutions. Astrophys. J. 432, 720– 741 (1994).

    Article  ADS  Google Scholar 

  26. Shu, F., Allen, A., Shang, H., Ostriker, E. & Li, Z. in The Origin of Stars and Planetary Systems (eds Lada, C. & Kylafis, N.) 193–226 (Kluwer, Dordrecht, 1999).

    Book  Google Scholar 

  27. Mouschovias, T. & Ciolek, G. in The Origin of Stars and Planetary Systems (eds Lada, C. & Kylafis, N.) 305 –340 (Kluwer, Dordrecht, 1999).

    Book  Google Scholar 

  28. Rucinski, S. & Krautter, J. TW Hya: a T Tauri star far from any dark cloud. Astron. Astrophys. 121, 217–225 (1983).

    ADS  CAS  Google Scholar 

  29. Reipurth, B. Star formation in Bok globules and low-mass clouds. I—The cometary globules in the Gum Nebula. Astron. Astrophys. 117, 183–198 (1983).

    ADS  CAS  Google Scholar 

  30. Launhardt, R. & Henning, T. Millimetre dust emission from northern Bok globules. Astron. Astrophys. 326, 329 –346 (1997).

    ADS  Google Scholar 

Download references

Acknowledgements

We thank M. Lombardi for fruitful discussions and assistance, the Paranal Science Operations team for observing Barnard 68 with FORS1 on Very Large Telescope (VLT) Antu, R. West and E. Janssen for composing Figure 1 top, and R. Hook and R. Fosbury for composing Figure 1 bottom. We also thank M. Petr for helpful discussions during the preparation of the VLT observations. E.A.L. acknowledges support from a Presidential Early Career Award for Scientists and Engineers to the University of Florida.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João F. Alves.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alves, J., Lada, C. & Lada, E. Internal structure of a cold dark molecular cloud inferred from the extinction of background starlight. Nature 409, 159–161 (2001). https://doi.org/10.1038/35051509

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35051509

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing