Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

RNA polymerase II elongation through chromatin

Abstract

The machinery that transcribes protein-coding genes in eukaryotic cells must contend with repressive chromatin structures in order to find its target DNA sequences. Diverse arrays of proteins modify the structure of chromatin at gene promoters to help transcriptional regulatory proteins access their DNA recognition sites. The way in which disruption of chromatin structure at a promoter is transmitted through a whole gene has not been defined. Recent breakthroughs suggest that the passage of an RNA polymerase through a gene is coupled to mechanisms that propagate the breakdown of chromatin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Model for transcription through a nucleosome by a single-subunit prokaryotic RNA polymerase13,14.
Figure 2: Propagation of chromatin disruption by chromatin-modifying activities that track with elongating RNAP II.
Figure 3: Models for the order of events in the decompaction of transcribed chromatin.

Similar content being viewed by others

References

  1. Kornberg, R. D. & Lorch, Y. Twenty-five years of the nucleosome, fundamental particle of the eukaryotic chromosome. Cell 98, 285–294 ( 1999).

    CAS  PubMed  Google Scholar 

  2. van Holde, K. E. Chromatin (Springer, New York, 1989).

    Book  Google Scholar 

  3. Orphanides, G., Lagrange, T. & Reinberg, D. The general transcription factors of RNA polymerase II. Genes Dev. 10, 2657– 2683 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Gross, D. S. & Garrard, W. T. Nuclease hypersensitive sites in chromatin. Annu. Rev. Biochem. 57, 159 –157 (1988).

    Article  CAS  PubMed  Google Scholar 

  5. Struhl, K. Histone acetylation and transcriptional regulatory mechanisms. Genes Dev. 12, 599–606 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  6. Hebbes, T. R., Clayton, A. L., Thorne, A. W. & Crane-Robinson, C. Core histone hyperacetylation co-maps with generalized DNase I sensitivity in the chicken beta-globin chromosomal domain. EMBO J. 13, 1823–1830 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kuo, M.-H. & Allis, C. Roles of histone acetyltransferases and deacetylases in gene regulation. BioEssays 20, 615–626 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Kingston, R. E. & Narlikar, G. J. ATP-dependent remodelling and acetylation as regulators of chromatin fluidity. Genes Dev. 13, 2339–2352 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Lorch, Y., Zhang, M. & Kornberg, R. D. Histone octamer transfer by a chromatin-remodelling complex. Cell 96, 389–392 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Owen-Hughes, T. & Workman, J. L. Experimental analysis of chromatin function in transcription control. Crit. Rev. Euk. Gene Exp. 4, 403–441 (1994).

    CAS  Google Scholar 

  11. Lorch, Y., LaPointe, J. W. & Kornberg, R. D. Nucleosomes inhibit the initiation of transcription but allow chain elongation with the displacement of histones. Cell 49, 203–210 ( 1987).

    Article  CAS  PubMed  Google Scholar 

  12. Clark, D. J. & Felsenfeld, G. A nucleosome core is transferred out of the path of a transcribing polymerase. Cell 71, 11–22 (1992).

    Article  CAS  PubMed  Google Scholar 

  13. Studitsky, V. M., Clark, D. J. & Felsenfeld, G. A histone octamer can step around a transcribing polymerase without leaving the template. Cell 76, 371 –382 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. Studitsky, V. M., Clark, D. J. & Felsenfeld, G. Overcoming a nucleosomal barrier to transcription. Cell 83, 19–27 ( 1995).

    Article  CAS  PubMed  Google Scholar 

  15. Nacheva, G. A. et al. Change in the pattern of histone binding to DNA upon transcriptional activation. Cell 58, 27– 36 (1989).

    Article  CAS  PubMed  Google Scholar 

  16. O'Neill, T. E., Roberge, M. & Bradbury, E. M. Nucleosome arrays inhibit both initiation and elongation of transcripts by bacteriophage T7 RNA polymerase. J. Mol. Biol. 223, 67–78 ( 1992).

    Article  CAS  PubMed  Google Scholar 

  17. Studitsky, V. M., Kassavetis, G. A., Geiduschek, E. P. & Felsenfeld, G. Mechanism of transcription through the nucleosome by eukaryotic RNA polymerase. Science 278, 1960–1963 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Izban, M. G. & Luse, D. S. Transcription on nucleosomal templates by RNA polymerase II in vitro: inhibition of elongation with enhancement of sequence-specific pausing. Genes Dev. 5, 683–696 (1991).

    Article  CAS  PubMed  Google Scholar 

  19. Orphanides, G., LeRoy, G., Chang, C. -H., Luse, D. S. & Reinberg, D. FACT, a factor that facilitates transcript elongation through nucleosomes. Cell 92, 105– 116 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Izban, M. J. & Luse, D. S. Factor-stimulated RNA polymerase II transcribes at physiological elongation rates on naked DNA but very poorly on chromatin templates. J. Biol. Chem. 267, 13647–13655 (1992).

    CAS  PubMed  Google Scholar 

  21. Brown, S. A., Imbalzano, A. N. & Kingston, R. E. Activator-dependent regulation of transcriptional pausing on nucleosomal templates. Genes Dev. 10, 1479–1490 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Bustin, M. & Reeves, R. High-mobility-group chromosomal proteins: architectural components that facilitate chromatin function. Prog. Nucleic Acid Res. Mol. Biol. 54, 35– 100 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Ding, H. F., Rimsky, S., Batson, S. C., Bustin, M. & Hansen, U. Stimulation of RNA polymerase II elongation by chromosomal protein HMG-14. Science 265 , 796–799 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Rowley, A., Singer, R. A. & Johnston, G. C. CDC68, a yeast gene that affects regulation of cell proliferation and transcription, encodes a protein with a highly acidic carboxyl terminus. Mol. Cell. Biol. 11, 5718– 5726 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Malone, E. A., Clarke, C. D., Chiang, A. & Winston, F. Mutations in SPT16/CDC68 suppress cis- and trans-acting mutations that affect promoter function in Saccharomyces cerevisiae. Mol. Cell. Biol. 11, 5710–5717 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Orphanides, G., Wu, W. H., Lane, W. S., Hampsey, M. & Reinberg, D. The chromatin-specific transcription elongation factor FACT comprises human SPT16 and SSRP1 proteins. Nature 400, 284–288 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Santisteban, M. S., Arents, G., Moudrianakis, E. N. & Smith, M. M. Histone octamer function in vivo: mutations in the dimer-tetramer interfaces disrupt both gene activation and repression. EMBO J. 16, 2493–2506 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Baer, B. W. & Rhodes, D. Eukaryotic RNA polymerase II binds to nucleosome cores from transcribed genes. Nature 301, 482–488 (1983).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Hartzog, G. A., Wada, T., Handa, H. & Winston, F. Evidence that Spt4, Spt5, and Spt6 control transcription elongation by RNA polymerase II in Saccharomyces cerevisiae. Genes Dev. 12, 357–369 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Winston, F. & Carlson, M. Yeast SNF/SWI transcriptional activators and the SPT/SIN chromatin connection. Trends Genet. 8, 387–391 (1992).

    Article  CAS  PubMed  Google Scholar 

  31. Wada, T. et al. DSIF, a novel transcription elongation factor that regulates RNA polymerase II processivity, is composed of human Spt4 and Spt5 homologs. Genes Dev. 12, 343–356 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bortvin, A. & Winston, F. Evidence that Spt6p controls chromatin structure by a direct interaction with histones. Science 272, 1473–1476 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Travers, A. Chromatin modification by DNA tracking. Proc. Natl Acad. Sci. USA 96, 13634–13637 ( 1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yang, X. J., Ogryzko, V. V., Nishikawa, J., Howard, B. H. & Nakatani, Y. A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A. Nature 382, 319–324 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Cho, H. et al. A human RNA polymerase II complex containing factors that modify chromatin structure. Mol. Cell. Biol. 18, 5355–5363 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Otero, G. et al. Elongator, a multisubunit component of a novel RNA polymerase II holoenzyme for transcriptional elongation. Mol. Cell 3, 109–118 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Wittschieben, B. O. et al. A novel histone acetyltransferase is an integral subunit of elongating RNA polymerase II holoenzyme. Mol. Cell 4, 123–128 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Strahl, B. D. & Allis, C. D. The language of covalent histone modifications. Nature 403, 41– 45 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Walia, H., Chen, H. Y., Sun, J. M., Holth, L. T. & Davie, J. R. Histone acetylation is required to maintain the unfolded nucleosome structure associated with transcribing DNA. J. Biol. Chem. 273, 14516–14522 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  40. O'Brien, T. & Lis, J. T. Rapid changes in Drosophila transcription after an instantaneous heat shock. Mol. Cell. Biol. 13, 3456–3463 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lee, D. & Lis, J. T. Transcriptional activation independent of TFIIH kinase and the RNA polymerase II mediator in vivo. Nature 393, 389–392 ( 1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  42. McNeil, J. B., Agah, H. & Bentley, D. Activated transcription independent of the RNA polymerase II holoenzyme in budding yeast. Genes Dev. 12, 2510–2521 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fraser, P. & Grosveld, F. Locus control regions, chromatin activation and transcription. Curr. Opin. Cell Biol. 10, 361–365 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Ashe, H. L., Monks, J., Wijgerde, M., Fraser, P. & Proudfoot, N. J. Intergenic transcription and transinduction of the human β-globin locus. Genes Dev. 11, 2494–2509 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gribnau, J., Diderich, K., Pruzina, S., Calzolari, R. & Fraser, P. Intergenic transcription and developmental remodelling of chromatin subdomains in the human β-globin locus. Mol. Cell 5, 377–386 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Bender, M. A., Bulger, M., Close, J. & Groudine, M. β-globin switching and DNase I sensitivity of the endogenous β-globin locus in mice do not require the locus control region. Mol. Cell 5, 387–393 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Kuo, M. -H., Zhou, J., Jambeck, P., Churchill, M. E. A. & Allis, C. D. Histone acetyltransferase activity of yeast Gcn5p is required for activation of target genes in vivo. Genes Dev. 12, 627–639 ( 1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Felsenfeld, G., Boyes, J., Chung, J., Clark, D. & Studitsky, V. Chromatin structure and gene expression. Proc. Natl Acad. Sci. USA 93, 9384– 9388 (1996).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. Roeder, R. G. The role of the general initiation factors in transcription by RNA polymerase II. Trends Biochem. Sci. 21, 327– 335 (1996).

    Article  CAS  PubMed  Google Scholar 

  50. Uptain, S. M., Kane, C. M. & Chamberlin, M. J. Basic mechanisms of transcript elongation and its regulation. Annu. Rev. Biochem. 66, 117– 172 (1997).

    Article  CAS  PubMed  Google Scholar 

  51. Neugebauer, K. M. & Roth, M. B. Transcription units as RNA processing units. Genes Dev. 11, 3279–3285 (1997).

    Article  CAS  PubMed  Google Scholar 

  52. Koleske, A. J. & Young, R. A. The RNA polymerase II holoenzyme and its implications for gene regulation. Trends Biochem. Sci. 20, 113–116 (1995).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Hampsey, D. Luse and S. Hahn for helpful comments, and R. Sternglanz, J. Workman and S. Hahn for communication of unpublished results. Work in D.R.'s laboratory is supported by grants from the NIH and the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danny Reinberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orphanides, G., Reinberg, D. RNA polymerase II elongation through chromatin. Nature 407, 471–476 (2000). https://doi.org/10.1038/35035000

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35035000

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing