Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Thin films of fullerene-like MoS2 nanoparticles with ultra-low friction and wear

Abstract

The tribological properties of solid lubricants such as graphite and the metal dichalcogenides MX2 (where M is molybdenum or tungsten and X is sulphur or selenium)1,2,3,4,5,6,7,8,9,10,11,12,13 are of technological interest for reducing wear in circumstances where liquid lubricants are impractical, such as in space technology, ultra-high vacuum or automotive transport. These materials are characterized by weak interatomic interactions (van der Waals forces) between their layered structures, allowing easy, low-strength shearing14,15. Although these materials exhibit excellent friction and wear resistance and extended lifetime in vacuum, their tribological properties remain poor in the presence of humidity or oxygen16,17,18,19, thereby limiting their technological applications in the Earth's atmosphere. But using MX2 in the form of isolated inorganic fullerene-like hollow nanoparticles similar to carbon fullerenes and nanotubes can improve its performance1. Here we show that thin films of hollow MoS2 nanoparticles, deposited by a localized high-pressure arc discharge method, exhibit ultra-low friction (an order of magnitude lower than for sputtered MoS2 thin films) and wear in nitrogen and 45% humidity. We attribute this ‘dry’ behaviour in humid environments to the presence of curved S–Mo–S planes that prevent oxidation and preserve the layered structure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: High-resolution transmission electron microscopy (TEM) images of 50-nm-thick films of MoS2 nanoparticles.
Figure 2: X-ray diffraction (XRD) patterns from thin films of MoS2 nanoparticles.
Figure 3: Wear tests on MoS2 films in different atmospheres.
Figure 4: HREM image of debris collected from the wear track region of an MoS2 nanoparticle film after the reciprocating wear test in 45% relative humidity in ambient conditions.

Similar content being viewed by others

References

  1. Rapoport, L. et al. Hollow nanoparticles of WS2 as potential solid-state lubricants. Nature 387, 791– 793 (1997).

    Article  ADS  CAS  Google Scholar 

  2. Bell, M. E. & Findlay, J. H. Molydenite as a new lubricant. Phys. Rev. 59, 922–927 (1941).

    CAS  Google Scholar 

  3. Braithwaite, E. R. & Rowe, G. W. Principles and applications of lubrication with solids. Sci. Lubricat. 15, 92–96 (1957).

    Google Scholar 

  4. Winer, W. O. Molybdenum disulphide as a lubricant: A review of the fundamental knowledge. Wear 10, 422–452 (1967).

    Article  CAS  Google Scholar 

  5. Spalvins, T. Lubrication with sputtered MoS2 films. ASLE Trans. 14, 267–271 (1972); Morphological and frictional behavior of sputtered MoS2 films. Thin Solid Films 96, 17– 24 (1982).

    Article  Google Scholar 

  6. Holinski, R. & Gansheimer, J. A study of the lubricating mechanism of molybdenum disulphide. Wear 19, 329– 342 (1972).

    Article  CAS  Google Scholar 

  7. Buck, V. Morphological properties of sputtered MoS2 films. Wear 91, 281–288 (1983).

    Article  CAS  Google Scholar 

  8. Fleischauer, P. D. & Tolentino, L. U. Effects of crystallite orientation on the environmental stability and lubrication properties of sputtered MoS2 thin films. ASLE Trans. 27, 82–88 (1984).

    Article  CAS  Google Scholar 

  9. Roberts, E. W. Thin solid lubricants in space. Tribol. Int. 23, 95–104 (1990).

    Article  CAS  Google Scholar 

  10. Miyoshi, K. et al. A vacuum (10-9 Torr) friction apparatus for determining friction and endurance like that of MoSx films. Tribol. Trans. 36, 351–358 (1993).

    Article  CAS  Google Scholar 

  11. Suzuki, M. Comparison of tribological characteristics of sputtered MoS2 films coated with different apparatus. Wear 218, 110–118 (1998).

    Article  CAS  Google Scholar 

  12. Wang, D. Y., Chang, C. L., Chen, Z. Y. & Ho, W. Y. Microstructural characterization of MoS2-Ti composite solid lubricating films. Surf. Coat. Technol. 121, 629– 635 (1999).

    Article  Google Scholar 

  13. Killeffer, D. H. & Linz, D. Molybdenum Compounds: Their Chemistry and Technology (Interscience, New York, 1952).

    Google Scholar 

  14. Dickinson, R. G. & Pauling, L. The crystal structure of molybdenite. J. Am. Chem. Soc. 45, 1466 –1471 (1923).

    Article  CAS  Google Scholar 

  15. Bragg, W. The investigation of the properties of thin films by means of x-rays. Nature 115, 266–269 ( 1925).

    Article  ADS  Google Scholar 

  16. Williams, J. A. Engineering Tribology 368–370 (Oxford Univ. Press, 1994).

    Google Scholar 

  17. Savage, R. H. Graphite lubrication. J. Appl. Phys. 19, 1–10 (1948).

    Article  ADS  CAS  Google Scholar 

  18. Arnell, R. D., Davies, P. B., Halling, J. & Whomes, T. L. Tribology—Principles and Design Applications 105– 107 (Macmillan, London, 1991).

    Google Scholar 

  19. Matsumoto, K. & Suzuki, M. in Proc. Int. Tribology Conf. 1995 1165–1169 (JST, Tokyo, 1996).

    Google Scholar 

  20. Feldman, Y., Wasserman, E., Srolovitz, D. J. & Tenne, R. High-rate, gas-phase growth of MoS2 nested inorganic fullerenes and nanotubes. Science 267, 222– 225 (1995).

    Article  ADS  CAS  Google Scholar 

  21. Jose-Yacaman, M. et al. Studies of MoS2 structures produced by electron irradiation. Appl. Phys. Lett. 69, 1065– 1067 (1996).

    Article  ADS  CAS  Google Scholar 

  22. Amaratunga, G. A. J. et al. Hard elastic carbon thin films from linking of carbon nanoparticles. Nature 383, 321–323 (1996).

    Article  ADS  CAS  Google Scholar 

  23. Chhowalla, M., Aharanov, R. A., Kiely, C. J., Alexandrou, I. A. & Amaratunga, G. A. J. Generation and deposition of fullerene- and nanotube-rich carbon thin films. Phil. Mag. Lett. 75, 329–335 ( 1997).

    Article  ADS  CAS  Google Scholar 

  24. Srolovitz, D. J., Safran, S. A., Homyonfer, M. & Tenne, R. Morphology of nested fullerenes. Phys. Rev. Lett. 74 , 1779–1782 (1995).

    Article  ADS  CAS  Google Scholar 

  25. Bilek, M. M. M., Martin, P. J. & McKenzie, D. R. Influence of gas pressure and cathode composition on ion energy distributions in filtered vacuum arcs. J. Appl. Phys. 83, 2965–2970 ( 1998).

    Article  ADS  CAS  Google Scholar 

  26. Dunn, D. N., Seitzman, L. E. & Singer, I. L. The origin of anomalous low (0002) peak in x-ray diffraction spectra of MoS2 films grown by ion beam assisted deposition (IBAD). J. Mater. Res. 12, 1191– 1194 (1997).

    Article  ADS  CAS  Google Scholar 

  27. Westergard, R. & Axén, N. Tribologia—Finn. J. Tribol. 17, 14–18 ( 1998).

    Google Scholar 

  28. Mattern, N., Hermann, H., Weise, G., Teresiak, A. & Bauer, H. D. Structure and properties of MoS2 films. Mater. Sci. Forum 235–238, 613– 618 (1997).

    Google Scholar 

  29. Dunn, D. N., Seitzman, L. E. & Singer, I. L. MoS2 deposited by ion beam assisted deposition: 2H or random layer structure? J. Mater. Res. 13, 3001–3007 (1998).

    Article  ADS  CAS  Google Scholar 

  30. Fox, V. C., Renevier, N., Teer, D. G., Hampshire, J. & Rigato, V. The structure of tribologically improved MoS2-metal composite coatings and their industrial applications. Surf. Coat. Technol. 119, 492– 497 (1999).

    Article  Google Scholar 

Download references

Acknowledgements

We thank R. Aharonov for general assistance and advice, and J. A. Williams for discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manish Chhowalla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chhowalla, M., Amaratunga, G. Thin films of fullerene-like MoS2 nanoparticles with ultra-low friction and wear. Nature 407, 164–167 (2000). https://doi.org/10.1038/35025020

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35025020

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing