Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Evidence for a link between global lightning activity and upper tropospheric water vapour

Abstract

Tropospheric water vapour is a key element of the Earth's climate, which has direct effects as a greenhouse gas, as well as indirect effects through interaction with clouds, aerosols and tropospheric chemistry. Small changes in upper-tropospheric water vapour have a much larger impact on the greenhouse effect than small changes in water vapour in the lower atmosphere1, but whether this impact is a positive or negative feedback remains uncertain2,3,4,5,6. The main challenge in addressing this question is the difficulty in monitoring upper-tropospheric water vapour globally over long timescales. Here I show that upper-tropospheric water-vapour variability and global lightning activity are closely linked, suggesting that upper-tropospheric water-vapour changes can be inferred from records of global lightning activity, readily obtained from observations at a single location on the Earth's surface. This correlation reflects the fact that continental deep-convective thunderstorms transport large amounts of water vapour into the upper troposphere and thereby dominate the variations of global upper-tropospheric water vapour while producing most of the lightning on Earth. As global lightning induces Schumann resonances, an electromagnetic phenomenon in the atmosphere that can be observed easily at low cost, monitoring of these resonances might provide a convenient method for tracking upper-tropospheric water-vapour variability and hence contribute to a better understanding of the processes affecting climate change.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Seasonal variability of upper-tropospheric water vapour (UTVW).
Figure 2: Variability of NVAP UTWV.
Figure 3: Schumann resonance as a global parameter.
Figure 4: Monthly extremely low frequency (ELF)–UTWV correlations.
Figure 5: Daily ELF–UTWV correlations.

Similar content being viewed by others

References

  1. Hansen, J. et al. in Climate Processes and Climate Sensitivity (eds Hansen, J. E. & Takahashi, T.) 130–162 (American Geophysical Union, Washington DC, 1984).

    Google Scholar 

  2. Rind, D. et al. Positive water vapour feedback in climate models confirmed by satellite data. Nature 349, 500–502 (1991).

    Article  CAS  ADS  Google Scholar 

  3. Del Genio, A. D., Kovari, W. Jr. & Yao, M. S. Climatic implications of the seasonal variations of upper troposphere water vapor. Geophys. Res. Lett. 21, 2701–2704 ( 1994).

    Article  ADS  Google Scholar 

  4. Sun, D. Z. & Held, I. M. A comparison of modeled and observed relationships between interannual variations of water vapor and temperature. J. Clim. 9, 665–675 (1996).

    Article  ADS  Google Scholar 

  5. Rind, D. Just add water vapor. Science 281, 1152– 1153 (1998).

    Article  CAS  Google Scholar 

  6. Lindzen, R. S. Some coolness concerning global warming. Bull. Am. Meteorol. Soc. 71, 288–299 ( 1990).

    Article  ADS  Google Scholar 

  7. Oltmans, S. J. & Hofmann, D. J. Increase in lower-stratospheric water vapor at a mid-latitude Northern Hemisphere site from 1981–1994. Nature 374, 146–148 (1995).

    Article  ADS  Google Scholar 

  8. Houghton, J. J. et al. (eds) Climate Change 1995: IPCC Assessment Report (Cambridge Univ. Press, Cambridge, 1996).

    Google Scholar 

  9. Newell, R. E. et al. Walker circulation and tropical upper tropospheric water vapor. J. Geophys. Res. 101, 1961– 1974 (1996).

    Article  ADS  Google Scholar 

  10. Takahashi, T. Near absence of lightning in torrential rainfall producing Micronesian thunderstorms. Geophys. Res. Lett. 17, 2381– 2384 (1990).

    Article  ADS  Google Scholar 

  11. Williams, E. R. et al. A radar and electrical study of tropical “hot towers”. J. Atmos. Sci. 49, 1386– 1395 (1992).

    Article  ADS  Google Scholar 

  12. Kent, G. S. et al. Surface temperature related variations in tropical cirrus cloud as measured by SAGE II. J. Clim. 8, 2577–2594 (1995).

    Article  ADS  Google Scholar 

  13. Houze, R. A. Observed structure of mesoscale convective systems and implications for large-scale heating. Q. J. R. Meteorol. Soc. 115, 425 –430 (1989).

    Article  ADS  Google Scholar 

  14. Sun, D-Z. & Lindzen, R. S. Distribution of tropical water vapor. J. Atmos. Sci. 50, 1643– 1660 (1993).

    Article  ADS  Google Scholar 

  15. Jensen, E. J. et al. High humidities and subvisible cirrus near the tropical tropopause. Geophys. Res. Lett. 26, 2347– 2350 (1999).

    Article  ADS  Google Scholar 

  16. Sodon, B. J. & Fu, R. A satellite analysis of deep convection, upper-tropospheric humidity, and the greenhouse effect. J. Clim. 8, 2333–2339 ( 1995).

    Article  ADS  Google Scholar 

  17. Hu, H. & Liu, W. T. The impact of upper tropospheric humidity from Microwave Limb Sounder on the midlatitude greenhouse effect. Geophys. Res. Lett. 25, 3151– 3154 (1998).

    Article  CAS  ADS  Google Scholar 

  18. Williams, E. R. The Schumann Resonance: a global tropical thermometer. Science 256, 1184–1186 ( 1992).

    Article  CAS  PubMed  ADS  Google Scholar 

  19. Price, C. Global surface temperatures and the atmospheric electric circuit. Geophys. Res. Lett. 20, 1363–1366 (1993).

    Article  ADS  Google Scholar 

  20. Williams, E. R. Global circuit response to seasonal variations in global surface air temperature. Mon. Weath. Rev. 122, 1917– 1929 (1994).

    Article  ADS  Google Scholar 

  21. Reeve, N. & Tuomi, R. Lightning activity as an indicator of climate change. Q. J. R. Meteorol. Soc. 125, 893–903 (1999).

    Article  ADS  Google Scholar 

  22. Markson, R. & Price, C. Ionospheric potential as a proxy index for global temperatures. Atmos. Res. 51, 309–314 (1999)

    Article  Google Scholar 

  23. Read, W. G. et al. Upper-tropospheric water vapor from UARS MLS. Bull. Am. Met. Soc. 76, 2381–2389 (1995); also at 〈http://mls. jpl. nasa. gov/joe/h2o_uptrop_djf_jja. html〉.

    Article  Google Scholar 

  24. Susskind, J. et al. Characteristics of the TOVS Pathfinder Path A dataset. Bull. Am. Met. Soc. 78, 1449–1472 (1997).

    Article  Google Scholar 

  25. Randel, D. L. et al. A new global water vapor dataset. Bull. Am. Meteorol. Soc. 77, 1233–1246 ( 1996).

    Article  ADS  Google Scholar 

  26. Latham, J. & Christian, H. Satellite measurements of global lightning. Q. J. R. Meteorol. Soc. 124, 1771–1773 (1998).

    Article  ADS  Google Scholar 

  27. Schumann, W. O. Über die strahlungslosen Eigenschwingungen einer leitenden Kugel, die von einer Luftschicht und einer Ionosphärenhülle umgeben ist. Z. Naturforsch. 7a, 149–162 (1952).

    MATH  ADS  Google Scholar 

  28. Heckman, S. J., Williams, E. & Boldi, B. Total global lightning inferred from Schumann Resonance measurements. J. Geophys. Res. 103, 31775 –31779 (1998).

    Article  ADS  Google Scholar 

  29. Fraser-Smith, A. C. et al. in Environmental and Space Electrodynamics (ed. Kikuchi, H.) 191–200 (Springer, Tokyo, 1991).

    Google Scholar 

  30. Price, C. et al. Possible implications of global climate change on global lightning distributions and frequencies. J. Geophys. Res. 99, 10823–10831 (1994).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I would like to thank T. Fraser-Smith for the use of the Antarctica ELF data used in this study and M. Füllekrug for making available the California data in Fig. 3 on the Internet. Part of this research was supported by the Israel-US Binational Science Foundation, and the European Community International Association for the promotion of co-operation with scientists from the New Independent States of the former Soviet Union (INTAS) programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colin Price.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Price, C. Evidence for a link between global lightning activity and upper tropospheric water vapour. Nature 406, 290–293 (2000). https://doi.org/10.1038/35018543

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35018543

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing