Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Neoproterozoic ‘snowball Earth’ simulations with a coupled climate/ice-sheet model

Abstract

Ice sheets may have reached the Equator in the late Proterozoic era (600–800 Myr ago), according to geological and palaeomagnetic studies, possibly resulting in a ‘snowball Earth’. But this period was a critical time in the evolution of multicellular animals, posing the question of how early life survived under such environmental stress. Here we present computer simulations of this unusual climate stage with a coupled climate/ice-sheet model. To simulate a snowball Earth, we use only a reduction in the solar constant compared to present-day conditions and we keep atmospheric CO2 concentrations near present levels. We find rapid transitions into and out of full glaciation that are consistent with the geological evidence. When we combine these results with a general circulation model, some of the simulations result in an equatorial belt of open water that may have provided a refugium for multicellular animals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Late Precambrian geography.
Figure 2: Operating curve for the climate/ice-sheet model.
Figure 3: The effect of ice dynamics on model results for an experiment with -5 W m-2 of infrared forcing.
Figure 4: Late Precambrian (Neoproterozoic) climate simulations.
Figure 5: The effect of precipitation on global ice volume.

Similar content being viewed by others

References

  1. Hoffman, P. F. Did the breakout of Laurentia turn Gondwanaland inside-out? Science 252, 1409–1411 ( 1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Dalziel, I. W. D. Overview: Neoproterozoic-Paleozoic geography and tectonics: Review, hypothesis, environmental speculation. Geol. Soc. Am. Bull. 109 , 16–42 (1997).

    Article  ADS  Google Scholar 

  3. Knoll, A. H. & Walter, M. R. Latest Proterozoic stratigraphy and Earth history. Nature 356, 673– 678 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Hoffman, P. F., Kaufman, A. J., Halverson, G. P. & Schrag, D. P. A Neoproterozoic snowball earth. Science 281, 1342–1346 (1998).

    Article  ADS  CAS  Google Scholar 

  5. Christie-Blick, N. Pre-Pleistocene glaciation on Earth: Implications for climatic history of Mars. Icarus 50, 423–443 (1982).

    Article  ADS  Google Scholar 

  6. Hambrey, H. A. & Harland, W. B. The late Proterozoic glacial era. Paleogeogr. Paleoclimatol. Paleoecol. 51, 255–272 (1985).

    Article  ADS  Google Scholar 

  7. Eyles, N. Earth's glacial record and its tectonic setting. Earth Sci. Rev. 35, 1–248 ( 1993).

    Article  ADS  Google Scholar 

  8. Schmidt, P. W. & Williams, G. E. The Neoproterozoic climate paradox: Equatorial paleolatitude for Maninoan glaciation near sea level in south Australia. Earth Planet. Sci. Lett. 134, 107– 124 (1995).

    Article  ADS  CAS  Google Scholar 

  9. Wray, G. A., Levontin, J. S. & Schapiro, L. H. Molecular evidence for deep Precambrian divergences among metazoan phyla. Science 274, 568– 573 (1996).

    Article  ADS  CAS  Google Scholar 

  10. Breyer, J. A., Busbey, A. B., Hanson, R. E. & Roy, E. C. Possible new evidence for the origin of metazoans prior to 1 Ga: Sediment-filled tubes from the Mesoproterozoic Allamoore formation, Trans-Pecos Texas. Geology 23, 269–272 ( 1995).

    Article  ADS  Google Scholar 

  11. McNamara, K. J. Dating the origin of animals. Science 274, 1995–1996 (1996).

    Article  ADS  CAS  Google Scholar 

  12. Fedonkin, M. A. & Waggoner, B. M. The Late Precambrian fossil Kimbrella is a mollusc-like bilaterian organism. Nature 388, 868–871 ( 1997).

    Article  ADS  CAS  Google Scholar 

  13. North, G. R. Theory of energy-balance climate models. J. Atmos. Sci. 41, 3990–3995 (1975).

    Google Scholar 

  14. Crowley, T. J. & Baum, S. K. Effect of decreased solar luminosity on late Precambrian ice extent. J. Geophys. Res. 98, 16723–16732 ( 1993).

    Article  ADS  Google Scholar 

  15. Jenkins, G. S. & Frakes, L. A. GCM sensitivity test using increased rotation rate, reduced solar forcing and orography to examine low latitude glaciation in the Neoproterozoic. Geophys. Res. Lett. 25, 3528 (1998).

    Article  ADS  Google Scholar 

  16. Jenkins, G. S. & Smith, S. R. GCM simulations of Snowball Earth conditions during the late Proterozoic. Geophys. Res. Lett. 26, 2263–2266 (1999).

    Article  ADS  CAS  Google Scholar 

  17. Williams, G. E. Late Precambrian glacial climate and the Earth's obliquity. Geol. Mag. 112, 441–465 ( 1975).

    Article  ADS  Google Scholar 

  18. Oglesby, R. J. & Ogg, J. G. The effect of large fluctuations in the obliquity on climates of the late proterozoic. Paleoclim. Data Modelling 2, 293–316 (1998).

    Google Scholar 

  19. Deblonde, G. & Peltier, W. R. Simulations of continental ice sheet growth over the last glacial-interglacial cycle: Experiments with a one-level seasonal energy balance model including realistic geography. J. Geophys. Res. 86, 9189–9215 (1991).

    Article  ADS  Google Scholar 

  20. Deblonde, G., Peltier, W. & Hyde, W. T. Simulations of continental ice-sheet growth over the glacial-interglacial cycle: Experiments with a one level seasonal energy balance model including seasonal ice albedo feedback. Glob. Planet. Change 98, 37–55 ( 1992).

    Article  ADS  Google Scholar 

  21. Tarasov, L. & Peltier, W. R. Terminating the 100 kyr ice age cycle. J. Geophys. Res D 18, 21665– 21693 (1997).

    Article  ADS  Google Scholar 

  22. Nye, J. F. The motion of ice sheets and glaciers. J. Glaciol. 3, 493–507 (1959).

    Article  ADS  Google Scholar 

  23. Reeh, N. Parameterization of melt rate and surface temperature on the Greenland ice sheet. Polarforschung 59, 113– 128 (1990).

    Google Scholar 

  24. Huybrechts, P. & T'Siobbel, S. Thermomechanical modelling of Northern Hemisphere ice sheets with a two-level mass-balance parameterization. Ann. Glaciol. 21, 111– 116 (1995).

    Article  ADS  Google Scholar 

  25. Hyde, W. T.,, Kim, K.-Y., Crowley, T. J. & North, G. R. On the relationship between polar continentality and climate: Studies with a nonlinear energy balance model. J. Geophys. Res D 11, 18653–18668 (1990).

    Article  ADS  Google Scholar 

  26. Crowley, T. J., Baum, S. K. & Hyde, W. T. Climate model comparisons of Gondwanan and Laurentide glaciations. J. Geophys. Res D 5, 619– 629 (1999).

    Google Scholar 

  27. Hyde, W., Crowley, T. J., Tarasov, L. & Peltier, W. R. The Pangean ice age: Studies with a coupled climate-ice sheet model. Clim. Dyn. 15, 619–629 ( 1999).

    Article  Google Scholar 

  28. Berger, A. Long-term variations of daily insolation and Quaternary climate changes. J. Atmos. Sci. 35, 2362–2367 (1978).

    Article  ADS  Google Scholar 

  29. Bond, G. C., Nickeson, P. A. & Kominz, M. A. Breakup of a supercontinent between 623 and 555 Ma: New evidence and implications for continental histories. Earth Planet. Sci. Lett 70, 325–345 (1984).

    Article  ADS  Google Scholar 

  30. Kaufman, A. J., Jacobson, S. B. & Knoll, A. H. The Vendian record of Sr and C isotopic variations in seawater: Implications for tectonics and paleoclimate. Earth Planet. Sci. Lett. 120, 409– 430 (1993).

    Article  ADS  CAS  Google Scholar 

  31. Baum, S. K. & Crowley, T. J. Seasonal snowline instability in a climate model with realistic geography: Application to Carboniferous (≈300 Ma) glaciation. Geophys. Res. Lett. 18, 1719–1722 (1991).

    Article  ADS  Google Scholar 

  32. Crowley, T. J., Yip, K.-J. J. & Baum, S. K. Snowline instability in a general circulation model: Application to Carboniferous glaciation. Clim. Dyn. 10, 363–376 (1994).

    Article  Google Scholar 

  33. Scotese, C. R. & Golonka, J. Paleogeographic Atlas (Technical report, Paleomap project, University of Texas-Arlington, 1992).

    Google Scholar 

  34. Crowley, T. J., Yip, K.-J. J. & Baum, S. K. Milankovitch cycles and Carboniferous climate. Geophys. Res. Lett. 20, 1175–1178 (1993).

    Article  ADS  Google Scholar 

  35. Thompson, S. L. & Pollard, D. A global climate model (GENESIS) with a land-surface-transfer scheme (LSX). Part 1: Present-day climate. J. Clim. 8, 732– 761 (1995).

    Article  ADS  Google Scholar 

  36. Baum, S. K. & Crowley, T. J. GCM response to Late Precambrian (600 Ma) ice-covered continents. J. Geophys. Res. (submitted).

  37. North, G. R. The small ice cap instability in diffusive climate models. J. Atmos. Sci. 32, 1301–1307 ( 1984).

    Article  ADS  Google Scholar 

  38. Manabe, S. & Broccoli, A. J. The influence of continental ice sheets on the climate of an ice age. J. Geophys. Res. 90, 2167–2190 (1985).

    Article  ADS  Google Scholar 

  39. Hyde, W. T., Crowley, T. J., Kim, K.-Y. & North, G. R. Comparison of GCM and energy balance model simulations of seasonal temperature changes over the past 18000 years. J. Clim. 2, 864–887 (1989).

    Article  ADS  Google Scholar 

  40. Jenkins, G. S. A general circulation model study of the effects of faster rotation rate, enhanced CO2 concentration and reduced solar forcing: Implications for the faint-young sun paradox. J. Geophys. Res. 98 , 20803–20811 (1993).

    Article  ADS  Google Scholar 

  41. Williams, G. E. Cyclicity in the Late Precambrian Elatina formation, South Australia: Solar or tidal signature? Clim. Change 13, 117 –128 (1998).

    Article  ADS  Google Scholar 

  42. Kirschvink, J. L. in The Proterozoic Biosphere (eds Schopf, J. W. & Klein, C.) 51–52 (Cambridge University Press, 1992).

    Google Scholar 

  43. Christie-Blick, N. in Proterozoic to Recent Stratigraphy, Tectonics and Vulcanology, Utah, Nevada, Southern Idaho and Central Mexico (eds Link, P. K. & Kowallis, B. J.) 1–30 (Geology Studies Vol. 42, Part I, Brigham Young University, Provo, 1997).

    Google Scholar 

  44. Paterson, W. S. B. The Physics of Glaciers (Pergamon, Oxford, 1981).

    Google Scholar 

  45. Peltier, W. R. Postglacial variations in the level of the sea: Implications for climate dynamics and solid-earth geophysics. Rev. Geophys. 36, 603–689 (1998).

    Article  ADS  Google Scholar 

  46. Tarasov, L. & Peltier, W. R. Impact of thermo-mechanical ice-sheet coupling on a model of the 100 kyr ice age cycle. J. Geophys. Res 104, 9517–9545 ( 1999).

    Article  ADS  Google Scholar 

  47. Fairbanks, R. G. A 17,000-year glacio-eustatic sea level record: Influence of glacial melting rates on Younger Dryas event and deep-ocean circulation. Nature 342, 637–642 ( 1989).

    Article  ADS  Google Scholar 

  48. Kaufmann, A. J., Knoll, G. H. & Narbonne, G. M. Isotopes, ice ages, and terminal Proterozoic Earth history. Proc. Natl Acad. Sci. USA 94, 6600 –6605 (1997).

    Article  ADS  Google Scholar 

  49. Kennedy, M. J., Runnegar, B., Prave, A. R., Hoffman, K. H. & Arthur, M. A. Two or four Neoproterozoic glaciations? Geology 26, 1059–1063 (1998).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank I. Dalziel and L. Gahagan for the plate reconstructions, and N. Christie-Blick, N. Eyles, I. Dalziel, P. Hoffman, M. Huber, A. Knoll and D. Schrag for comments and suggestions. We thank P. Smith for helping to prepare the cover picture. This research was supported by the National Center for Atmospheric Research, the National Sciences and Engineering Research Council fo Canada, and by the NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William T. Hyde.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hyde, W., Crowley, T., Baum, S. et al. Neoproterozoic ‘snowball Earth’ simulations with a coupled climate/ice-sheet model. Nature 405, 425–429 (2000). https://doi.org/10.1038/35013005

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35013005

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing