Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Detection of an impact-generated dust cloud around Ganymede

Abstract

Dust pervades the Solar System, and is concentrated in the ring systems surrounding the giant planets and along the plane of the planetary orbits (the Zodiacal cloud). Individual dust grains are thought to be generated when impacts loft material from larger bodies20,21,23,24,25,26, 27 such as satellites. Uncertainties in theoretical models of this ejection process are large, and there have hitherto been no direct measurements with which to constrain these models. Here we report in situ measurements of submicrometre dust within a few radii of Jupiter's satellite Ganymede. The directions, speeds and distribution of masses of the grains indicate that they come from Ganymede, and are consistent with an ejection process resulting from hypervelocity impacts of interplanetary dust onto Ganymede's surface. Dust appears also to be concentrated near Callisto and Europa, suggesting that these satellites too are significant sources of dusty debris.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Galileo's trajectory and geometry of dust detection during the G7 Ganymede fly-by.
Figure 2: Sensor direction (rotation angle, Θ) versus altitude of the Galileo spacecraft above the surface of Ganymede at the time of dust impact.
Figure 3: The number density of dust as a function of altitude above the surface of Ganymede.

Similar content being viewed by others

References

  1. Grün, E. et al. The Galileo dust detector. Space Sci. Rev. 60, 317–340 (1992).

    Article  ADS  Google Scholar 

  2. Grün, E. et al. The Ulysses dust experiment. Astron. Astrophys. Suppl. Ser. 92, 411–423 (1992).

    ADS  Google Scholar 

  3. Grün, E. et al. Reduction of Galileo and Ulysses dust data. Planet. Space Sci. 43, 941–951 (1995).

    Article  ADS  Google Scholar 

  4. Krüger, H. et al. Three years of Galileo dust data: II. 1993 to 1995. Planet. Space Sci. 47, 85–106 (1999).

    Article  ADS  Google Scholar 

  5. Grün, E. et al. Dust measurements in the jovian magnetosphere. Geophys. Res. Lett. 24, 2171–2174 (1997).

    Article  ADS  Google Scholar 

  6. Grün, E. et al. Galileo observes electromagnetically coupled dust in the jovian magnetosphere. J.Geophys. Res. 103, 20011–20022 (1998).

    Article  ADS  Google Scholar 

  7. Krüger, H., Grün, E., Graps, A. & Lammers, S. Observations of electromagnetically coupled dust in the Jovian magnetosphere. Astrophys. Space Sci.(in the press).

  8. Grün, E. et al. Discovery of jovian dust streams and interstellar grains by the Ulysses spacecraft. Nature 362, 428–430 (1993).

    Article  ADS  Google Scholar 

  9. Grün, E. et al. Constraints from Galileo observations on the origin of jovian dust streams. Nature 381, 395–398 (1996).

    Article  ADS  Google Scholar 

  10. Krüger, H., Krivov, A. V., Grün, E. & Hamilton, D. P. Adust cloud of Ganymede maintained by hypervelocity impacts of micrometeroids. J. Geophys. Res.(submitted).

  11. Zook, H. A. et al. Solar wind magnetic field bending of jovian dust trajectories. Science 274, 1501–1503 (1996).

    Article  ADS  CAS  Google Scholar 

  12. Koschny, D. & Grün, E. Impacts into ice-silicate mixtures: Crater morphologies, volumes, depth-to-diameter ratios and yield. Icarus(submitted).

  13. Koschny, D. & Grün, E. Impacts into ice-silicate mixtures: Ejecta mass and size distributions. Icarus(submitted).

  14. Krivov, A. V. On the dust belts of Mars. Astron. Astrophys. 291, 657–663 (1994).

    ADS  Google Scholar 

  15. Krivov, A. V. & Jurewicz, A. The ethereal dust envelopes of the Martian moons. Planet. Space Sci. 47, 45–56 (1999).

    Article  ADS  Google Scholar 

  16. Iglseder, H., Uesugi, K. & Svedhem, H. Cosmic dust measurements in lunar orbit. Adv. Space Res. 17, 177–182 (1996).

    Article  ADS  Google Scholar 

  17. Burns, J. A., Showalter, M. R. & Morfill, G. E. in Planetary Rings(eds Greenberg, R. & Brahic, A.) 200–272 (Univ. Arizona Press, Tucson, (1984).

    Google Scholar 

  18. Ockert-Bell, M. E. et al. The structure of Jupiter's ring system as revealed by the Galileo imaging experiment. Icarus 138, 188–219 (1999).

    Article  ADS  Google Scholar 

  19. Burns, J. A. et al. The formation of Jupiter's faint rings. Science 284, 1146–1150 (1999).

    Article  ADS  CAS  Google Scholar 

  20. Hamilton, D. P. & Burns, J. A. Origin of Saturn's E ring: self-sustained, naturally. Science 264, 550–553 (1994).

    Article  ADS  CAS  Google Scholar 

  21. Burns, J., Hamilton, D. P., Mignard, F. & Soter, S. in Physics, Chemistry, and Dynamics of Interplanetary Dust(eds Gustafson, B. A. S. & Hanner, M. S.) 179–182 (Vol. 104, ASP Conf. Ser., Kluwer, Dordrecht, (1996).

    Google Scholar 

  22. Banaszkiewicz, M. & Krivov, A. V. Hyperion as a dust source in the saturnian system. Icarus 129, 289–303 (1997).

    Article  ADS  Google Scholar 

  23. Esposito, L. W., Brahic, A., Burns, J. A. & Marouf, E. A. in Uranus(eds Bergstrahl, J. T., Miner, E. A. & Matthews, M. S.) 410–465 (Univ. Arizona Press, Tucson, (1991).

    Google Scholar 

  24. Colwell, J. E. & Esposito, L. W. Amodel of dust production in the Neptune ring system. Geophys. Res. Lett. 17, 1741–1744 (1990).

    Article  ADS  Google Scholar 

  25. Soter, S. The Dust Belts of Mars(Report of Center for Radiophysics and Space Research No. 462, (1971).

    Google Scholar 

  26. Krivov, A. V. & Hamilton, D. P. Martian dust belts: Waiting for discovery. Icarus 128, 335–353 (1997).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank the Galileo project at JPL for effective and successful mission operations. A.K. thanks his colleagues in the Heidelberg dust group for their hospitality and for funding his stay at MPIK. This work was supported by Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Krüger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krüger, H., Krivov, A., Hamilton, D. et al. Detection of an impact-generated dust cloud around Ganymede. Nature 399, 558–560 (1999). https://doi.org/10.1038/21136

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/21136

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing