Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Possible long-lived asteroid belts in the inner Solar System

Abstract

Recent years have seen the discovery of several objects in stable orbits in the outer Solar System1,2,3; these bodies include objects in the Kuiper belt (also known as the Kuiper–Edgeworth belt) as well as the Centaurs. Moreover, another region of orbital stability has been identified between the orbits of Uranus and Neptune4. Here we report evidence from numerical simulations of zones of orbital stability in the inner Solar System. We find that there are two possible long-lived belts of asteroids. The first region lies between the Sun and Mercury, in the range 0.09–0.21 astronomical units, where remnant planetesimals may survive for the age of the Solar System provided that their radii are greater than 0.1 kilometres. The second region of stability is between Earth and Mars (range 1.08–1.28 astronomical units), where a population of bodies that are on circular orbits may survive. A search through the catalogues of near-Earth objects reveals an excess of asteroids with low eccentricities and inclinations occupying this latter region: several examples are the recently discovered objects 1996 XB27, 1998 HG49 and 1998 KG3.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The calculated survival time plotted against the starting semimajor axis (in astronomical units) for test particles in the inner Solar Sys.

Similar content being viewed by others

References

  1. Kowal, C. T. in Asteroids(ed. Gehrels, T.) 436–439 (Univ. Arizona Press, Tucson, (1979).

    Google Scholar 

  2. Jewitt, D. & Luu, J. X. Discovery of the candidate Kuiper belt object 1992 QB1. Nature 362, 730– 732 (1993).

    Article  ADS  Google Scholar 

  3. Williams, I. P., O'Cellaigh, D. P., Fitzsimmons, A. & Marsden, B. G. The slow-moving objects 1993 SB and 1993 SC. Icarus 116, 180–185 ( 1995).

    Article  ADS  Google Scholar 

  4. Holman, M. J. Apossible long-lived belt of objects between Uranus and Neptune. Nature 387, 785–788 ( 1997).

    Article  ADS  CAS  Google Scholar 

  5. Wisdom, J. & Holman, M. J. Symplectic maps for the n-body problem. Astron. J. 102, 1528– 1538 (1991).

    Article  ADS  Google Scholar 

  6. Saha, P. & Tremaine, S. D. Symplectic integrators for solar system dynamics. Astron. J. 104, 1633– 1640 (1992).

    Article  ADS  Google Scholar 

  7. Saha, P. & Tremaine, S. D. Long term planetary integration with individual time steps. Astron. J. 108, 1962–1969 (1994).

    Article  ADS  Google Scholar 

  8. Holman, M. J. & Wisdom, J. Dynamical stability in the outer solar system and the delivery of short period comets. Astron. J. 105, 1987–1999 ( 1993).

    Article  ADS  Google Scholar 

  9. Danby, J. M. A. Fundamentals of Celestial Mechanics(Willmann-Bell, Richmond, ( 1988).

    Google Scholar 

  10. Mikkola, S. & Innanen, K. Solar system chaos and the distribution of asteroid orbits. Mon. Not. R. Astron. Soc. 277, 497–501 (1995).

    Article  ADS  Google Scholar 

  11. Weidenschilling, S. J. Iron/silicate fractionation and the origin of Mercury. Icarus 35, 99–111 (1978).

    Article  ADS  CAS  Google Scholar 

  12. Leake, M. A., Chapman, C. R., Weidenschilling, S. J., Davis, D. R. & Greenberg, R. The chronology of Mercury's geological and geophysical evolution—The Vulcanoid hypothesis. Icarus 71, 350–375 ( 1987).

    Article  ADS  Google Scholar 

  13. Campins, H., Davis, D. R., Weidenschilling, S. J. & Magee, M. in Completing the Inventory of the Solar System(eds Rettig, T. W. & Hahn, J. M.) 85–96 (ASP Conf. Proc., Astron. Soc. Pacif., San Francisco, (1996).

    Google Scholar 

  14. Dones, L., Levison, H. F. & Duncan, M. in Completing the Inventory of the Solar System(eds Retting, T. W. & Hahn, J. M.) 233–244 (ASP Conf. Proc., Astron. Soc. Pacif., San Francisco, (1996).

    Google Scholar 

  15. Weissman, P. R., A'Hearn, M. F., McFadden, L. A. & Rickman, H. in Asteroids II(eds Binzel, R. P., Gehrels, T. & Matthews, M. S.) 880–920 (Univ. Arizona Press, Tucson, (1989).

    Google Scholar 

  16. Robertson, H. P. Dynamical effects of radiation in the solar system. Mon. Not. R. Astron. Soc. 97, 423–438 (1937).

    Article  ADS  Google Scholar 

  17. Pettit, E. in Planets and Satellites(eds Kuiper, G. P. & Middlehurst, B.) 400–427 (Univ. Chicago Press, (1961 ).

    Google Scholar 

  18. Bowell, E. G. The Asteroid Orbital Element Databaseat 〈ftp://ftp.lowell.edu/pub/elgb/astorb.html 〉.

  19. McFadden, L. A., Tholen, D. J. & Veeder, G. J. in Asteroids II(eds Binzel, R. P., Gehrels, T. & Matthews, M. S.) 442–467 (Univ. Arizona Press, Tucson, (1989).

    Google Scholar 

  20. Gladman, B. et al . Dynamical lifetimes of objects injected into asteroid belt resonances. Science 277, 197– 201 (1997).

    Article  ADS  CAS  Google Scholar 

  21. Saha, P., Stadel, J. & Tremaine, S. D. Aparallel integration method for solar system dynamics. Astron. J. 114, 409–414 (1997).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank P. Saha and S. Tremaine for suggestions and comments, as well as their advice on computational matters, and J. Chambers, M. Holman and L. Dones for helpful criticism. The Royal Society supported the purchase of dedicated computers, and we also thank the Oxford Supercomputing Centre (OSCAR) for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Wyn Evans.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evans, N., Tabachnik, S. Possible long-lived asteroid belts in the inner Solar System. Nature 399, 41–43 (1999). https://doi.org/10.1038/19919

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/19919

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing