Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Sublimation from icy jets as a probe of the interstellar volatile content of comets

Abstract

Comets are some of the most primitive bodies left over from the Solar System's early history. They may preserve both interstellar material and material from the proto-solar nebula, and so studies of their volatile components can provide clues about the evolution of gases and ices, as a collapsing molecular cloud transforms into a mature planetary system1,2. Previous observations of emission from rotational transitions in molecules have averaged over large areas of the inner coma, and therefore include both molecules that sublimed from the nucleus and those that result from subsequent chemical processes in the coma. Here we present high-resolution observations of emission from the molecules HNC, DCN and HDO associated with comet Hale–Bopp. Our data reveal arc-like structures—icy jets—offset from (but close to) the nucleus. The measured abundance ratios on 1–3″ scales are substantially different from those on larger scales3,4,5, and cannot be accounted for by models of chemical processes in the coma2,6,7; they are, however, similar to the values observed in the cores of dense interstellar clouds and young stellar objects. We therefore propose that sublimation from millimetre-sized icy grains ejected from the nucleus provides access to relatively unaltered volatiles. The D/H ratios inferred from our data suggest that, by mass, Hale–Bopp (and by inference the outer regions of the early solar nebula) consists of 15–40% of largely unprocessed interstellar material.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Contour images of millimetre-wave rotational line emission from the coma of comet Hale–Bopp.
Figure 2: OVRO images of the DCN J = 3 → 2 (217.238 GHz) emission in the coma of Hale–Bopp.

Similar content being viewed by others

References

  1. Festou, M. C., Rickman, H. & West, R. M. Comets. II. Models, evolution, origin, and outlook. Astron. Astrophys. Rev. 5, 37–163 (1993).

    Article  ADS  Google Scholar 

  2. Irvine, W. M., Schloerb, F., Crovisier, J., Fegley, B. & Mumma, M. in Protostars & Planets IV (eds Mannings, V., Boss, A. & Russell, S.) (Univ. Arizona Press, Tucson, in the press).

  3. Biver, N. et al. Evolution of the outgassing of comet Hale-Bopp (C/1995 O1) from radio observations. Science 275, 1915–1918 (1997).

    Article  ADS  CAS  Google Scholar 

  4. Meier, R. et al. Deuterium in comet C/1995 O1 (Hale-Bopp): Detection of DCN. Science 279, 1707–1710 (1998).

    Article  ADS  CAS  Google Scholar 

  5. Meier, R. et al. Adetermination of the HDO/H2O ratio in comet C/1995 O1 (Hale-Bopp). Science 279, 842–844 (1998).

    Article  ADS  CAS  Google Scholar 

  6. Irvine, W. M. et al. Chemical processing in the coma as the source of cometary HNC. Nature 393, 547–550 (1998).

    Article  ADS  CAS  Google Scholar 

  7. Rodgers, S. & Charnley, S. HNC & HCN in comets. Astrophys. J. 501, L227–250 (1998).

    Article  ADS  CAS  Google Scholar 

  8. Schilke, P. et al. Astudy of HCN, HNC, and their isotopomers in OMC-1. Astron. Astrophys. 256, 595–612 (1992).

    ADS  CAS  Google Scholar 

  9. Van Dishoeck, E. F., Blake, G. A., Jansen, D. J. & Groesbeck, T. D. Molecular abundances and low mass star formation. II. Organic and deuterated species toward IRAS 16293-2422. Astrophys. J. 447, 760–782 (1995).

    Article  ADS  CAS  Google Scholar 

  10. Dutrey, A., Guilloteau, S. & Guelin, M. Chemistry of protosolar-like nebulae: The molecular content of the DM Tau and GG Tau disks. Astron. Astrophys. 317, L55–58 (1997).

    ADS  CAS  Google Scholar 

  11. Willacy, K., Klahr, H. H., Millar, T. J. & Henning, T. Gas and grain chemistry in a protoplanetary disk. Astron. Astrophys. 338, 995–1006 (1998).

    ADS  CAS  Google Scholar 

  12. Irvine, W. M. et al. Chemistry in cometary comae. Faraday Discuss. 109, 475–492 (1998).

    Article  ADS  CAS  Google Scholar 

  13. Wootten, A. in Astrochemsitry (eds Vardya, M. S. & Tarafdar, S. P.) 311–319 (IAU Symp. 120, Reidel, Dordrecht, (1987).

    Book  Google Scholar 

  14. Jacq, T. et al. Deuterated water and ammonia in hot cores. Astron. Astrophys. 228, 447–470 (1990).

    ADS  CAS  Google Scholar 

  15. Gautier, D. & Morel, P. Areestimate of the protosolar (D/H)pratio from (3He/4He)swsolar wind measurements. Astron. Astrophys. 323, L9–L12 (1997).

    ADS  CAS  Google Scholar 

  16. Eberhardt, P., Reber, M., Krankowsky, D. & Hodges, R. R. The D/H and 18O/16O ratios in water from comet P/Halley. Astron. Astrophys. 302, 301–316 (1995).

    ADS  Google Scholar 

  17. Bockelée-Morvan, D. et al. Deuterated water in comet C/1996 B2 (Hyakutake) and its implications for the origin of comets. Icarus 133, 147–162 (1998).

    Article  ADS  Google Scholar 

  18. Licandro, J. et al. The rotation period of C/1995 O1 (Hale-Bopp). Astrophys. J. 501, L221–L225 (1998).

    Article  ADS  Google Scholar 

  19. Mueller, B. E. A., Samarasinha, N. H. & Belton, M. J. S. Imaging of the structure and evolution of the coma morphology of Comet Hale-Bopp (C/1995 O1). Earth, Moon, Planets(in the press).

  20. Hogerheijde, M. R. The molecular environment of low-mass protostars.Thesis, Leiden Univ.(1998).

  21. Bockelée-Morvan, D. & Rickman, H. C/1995 O1 (Hale-Bopp): Gas production curves and their interpretation. Earth, Moon, Planets(in the press).

  22. Harmon, J. K. et al. Radar detection of the nucleus and coma of comet Hyakutake (C/1996 B2). Science 278, 1921–1924 (1997).

    Article  ADS  CAS  Google Scholar 

  23. Jenniskens, P., Banham, S. F., Blake, D. F. & McCoustra, M. R. S. Liquid water in the domain of cubic crystalline ice Ic. J. Chem. Phys. 107, 1232–1241 (1997).

    Article  ADS  CAS  Google Scholar 

  24. Crovisier, J. et al. The spectrum of comet Hale-Bopp (C/1995 O1) observed with the Infrared Space Observatory at 2.9 AU from the Sun. Science 275, 1904–1907 (1997).

    Article  ADS  CAS  Google Scholar 

  25. Stern, A., Slater, D. C., Festou, M. C., Parker, J. W. & A'Hearn, M. F. The EUV spectrum and the discovery of argon in comet Hale-Bopp. Science(submitted).

  26. Notesco, G., Laufer, D. & Bar-Nun, A. The source of the high C2H6/CH4ratio in comet Hyakutake. Icarus 125, 471–473 (1997).

    Article  ADS  CAS  Google Scholar 

  27. Green, S., McLean, S. & McLean, A. D. Improved collisional excitation rates for interstellar water. Astrophys. J. Suppl. Ser. 85, 181–185 (1993).

    Article  ADS  CAS  Google Scholar 

  28. Crovisier, J. Rotational and vibrational synthetic spectra of linear parent molecules in comets. Astron. Astrophys. Suppl. Ser. 68, 223–258 (1987).

    ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank the staff at OVRO and D. K. Yeomans at JPL for support of our Hale-Bopp observations. The OVRO Millimeter Array is operated by the California Institute of Technology under funding from the US NSF. M.R.H. was supported by the Miller Institute for Basic Research in Science. G.A.B. was a Visting Fellow at the University of Colorado; additional support to G.A.B. from the NASA Exobiology and Origins of Solar Systems programs is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey A. Blake.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blake, G., Qi, C., Hogerheijde, M. et al. Sublimation from icy jets as a probe of the interstellar volatile content of comets. Nature 398, 213–216 (1999). https://doi.org/10.1038/18372

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/18372

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing