Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Transient clouds in Titan's lower atmosphere

Abstract

The 1980 encounter by the Voyager 1 spacecraft with Titan, Saturn's largest moon, revealed1,2 the presence of a thick atmosphere containing nitrogen and methane (1.4 and 0.05 bar, respectively). Methane was found to be nearly saturated at Titan's tropopause, which, with other considerations, led to the hypothesis that Titan might experience a methane analogue of Earth's vigorous hydrological cycle, with clouds, rain and seas3,4,5,6,7. Yet recent analyses of Voyager data indicate large areas of supersaturated methane, more indicative of dry and stagnant conditions8,9. A resolution to this apparent contradiction requires observations of Titan's lower atmosphere, which was hidden from the Voyager cameras by the photochemical haze (or smog) in Titan's stratosphere. Here we report near-infrared spectroscopic observations of Titan within four narrow spectral windows where the moon's atmosphere is ostensibly transparent. We detect pronounced flux enhancements that indicate the presence of reflective methane condensation clouds in the troposphere. These clouds occur at a relatively low altitude (15 ± 10 km), at low latitudes, and appear to cover 9 per cent of Titan's disk.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: UKIRT observations of Titan.
Figure 2: 2.0 μm (a) and 1.6 μm (b) light curves of Titan, derived from our observations (circles) and those recorded by Griffith et al.10 (triangles), Coustenis et al.18 (squares) and Lemmon et al.17 (diamonds).
Figure 3: The transmission of sunlight in Titan's atmosphere.
Figure 4: Comparisons between radiative transfer models (red lines) and observations.

Similar content being viewed by others

References

  1. Lindal, G. F. et al . The atmosphere of Titan: an analysis of the Voyager 1 radio-occultation measurements. Icarus 53, 348–363 (1983).

    Article  ADS  CAS  Google Scholar 

  2. Lellouch, E. et al . Titan's atmospheric temperature profile: a reanalysis of the Voyager 1 radio-occultation and IRIS 7.7 micron data. Icarus 79, 328–349 (1989).

    Article  ADS  CAS  Google Scholar 

  3. Lunine, J. I., Stevenson, D. J. & Yung, Y. L. Ethane ocean on Titan. Science 222, 1229–1230 (1983).

    Article  ADS  CAS  Google Scholar 

  4. Flasar, F. M. Oceans on Titan? Science 221, 55–57 (1983).

    Article  ADS  CAS  Google Scholar 

  5. Toon, O. B., McKay, C. P., Courtin, R. & Ackerman, T. P. Methane rain on Titan. Icarus 75, 255–284 (1988).

    Article  ADS  CAS  Google Scholar 

  6. Eshleman, V. R., Lindal, G. F. & Tyler, G. L. Is Titan wet or dry? Science 221, 55–57 (1983).

    Article  ADS  Google Scholar 

  7. Hunten, D. M. et al . in Saturn (eds Gehrels, T. & Matthews, M. S.) 671–759 (Univ. of Arizona Press, Tucson, 1984).

    Google Scholar 

  8. Courtin, R., Gautier, D. & McKay, C. Titan's thermal emission spectrum: reanalysis of the Voyager infrared measurements. Icarus 114, 144–162 (1995).

    Article  ADS  CAS  Google Scholar 

  9. Samuelson, R. E., Nath, N. R. & Borysow, A. Gaseous abundances and methane supersaturation in Titan's tropopause. Planet. Space Sci. 45, 959–980 (1997).

    Article  ADS  CAS  Google Scholar 

  10. Griffith, C. A., Owen, T. & Wagener, R. Titan's surface and trophosphere, investigated with ground-based, near-infrared observations. Icarus 93, 362–378 (1991).

    Article  ADS  CAS  Google Scholar 

  11. Lemmon, M. T., Karkoschka, E. & Tomasko, M. Titan's rotation: surface feature observed. Icarus 103, 329–332 (1993).

    Article  ADS  Google Scholar 

  12. Griffith, C. A. Evidence for surface heterogeneity on Titan. Nature 364, 511–513 (1993).

    Article  ADS  Google Scholar 

  13. Noll, K. S., Geballe, T. S., Knacke, R. F. & Pendleton, Y. J. Titan's 5 μm spectral window: carbon monoxide and the albedo of the surface. Icarus 124, 625–631 (1996).

    Article  ADS  CAS  Google Scholar 

  14. Muhleman, D. O., Grossman, A. W., Butler, B. J. & Slade, M. A. Radar reflectivity of Titan. Science 248, 975–980 (1990).

    Article  ADS  CAS  Google Scholar 

  15. Smith, P. H. et al . Titan's surface revealed by HST imaging. Icarus 119, 336–349 (1996).

    Article  ADS  Google Scholar 

  16. Combes, M. et al . Spatially resolved images of Titan by means of adaptive optics. Icarus 129, 482–497 (1997).

    Article  ADS  Google Scholar 

  17. Lemmon, M. T., Karkoschka, E. & Tomasko, M. Titan's rotational light-curve. Icarus 113, 27–38 (1995).

    Article  ADS  Google Scholar 

  18. Coustenis, A., Lellouch, E., Maillard, J. P. & McKay, C. P. Titan's surface: composition and variability from its near-infrared albedo. Icarus 118, 87–104 (1995).

    Article  ADS  CAS  Google Scholar 

  19. Khare, B. N. et al . Optical constants of organic tholins produced in a simulated Titanian atmosphere: from soft X-ray to microwave frequencies. Icarus 60, 127–137 (1984).

    Article  ADS  CAS  Google Scholar 

  20. Husson, N., Bonnet, B., Scott, N. A. & Chédin, A. The “GEISA” data bank, 1991 version (Int. note L.M.D. 163, Lab. de Météorologie Dynamique, Palaiseau, 1991).

    Google Scholar 

  21. Rages, K., Pollack, J. B. & Smith, P. H. Size estimates of Titan's aerosols based on Voyager high-phase-angle images. J. Geophys. Res. 88, 8721–8728 (1983).

    Article  ADS  Google Scholar 

  22. McKay, C. P., Pollack, J. B. & Courtin, R. The thermal structure of Titan's atmosphere. Icarus 80, 23–53 (1989).

    Article  ADS  CAS  Google Scholar 

  23. Toon, O. B., McKay, C. P., Griffith, C. A. & Turco, R. P. Aphysical model of Titan's aerosols. Icarus 95, 24–53 (1992).

    Article  ADS  CAS  Google Scholar 

  24. Strong, K., Taylor, F. W., Calcutt, S. B., Remedios, J. J. & Ballard, J. Spectral parameters of self- and hydrogen-broadened methane from 2000 to 9500 cm−1 for remote sounding of the atmosphere of Jupiter. J. Quant. Spectrosc. Rad. Transfer 50, 363–429 (1993).

    Article  ADS  CAS  Google Scholar 

  25. Calvin, W. M. & Clark, R. N. Modeling the reflectance spectrum of Callisto 0.25 to 4.1 μm. Icarus 89, 305–317 (1991).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank C. McKay for conversations on the weather, M. Flasar for suggestions that improved the paper, K. Noll for a helpful reading and C. B. Phillips for help in operating arduous radiative transfer codes. C.G. was supported by an NSF Young Investigator Award, the Research Corporation, and the NASA Planetary Astronomy Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caitlin A. Griffith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Griffith, C., Owen, T., Miller, G. et al. Transient clouds in Titan's lower atmosphere. Nature 395, 575–578 (1998). https://doi.org/10.1038/26920

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/26920

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing