Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The biosynthetic pathway of vitamin C in higher plants

Abstract

Vitamin C (L-ascorbic acid) has important antioxidant and metabolic functions in both plants and animals, but humans, and a few other animal species, have lost the capacity to synthesize it1. Plant-derived ascorbate is thus the major source of vitamin C in the human diet. Although the biosynthetic pathway of L-ascorbic acid in animals is well understood2, the plant pathway has remained unknown3—one of the few primary plant metabolic pathways forwhich this is the case. L-ascorbate is abundant in plants (found at concentrations of 1–5 mM in leaves and 25 mM in chloroplasts3,4) and may have roles in photosynthesis and transmembrane electron transport3,4,5. We found that D-mannose and L-galactose are efficient precursors for ascorbate synthesis and are interconverted by GDP-D-mannose-3,5-epimerase. We have identified an enzyme in pea and Arabidopsis thaliana, L-galactose dehydrogenase, that catalyses oxidation of L-galactose to L-galactono-1,4-lactone. We propose anascorbate biosynthesis pathway involving GDP-D-mannose, GDP-L-galactose, L-galactose and L-galactono-1,4-lactone, and have synthesized ascorbate from GDP-D-mannose by way of these intermediates in vitro. The definition of this biosynthetic pathway should allow engineering of plants for increased ascorbate production, thus increasing their nutritional value and stress tolerance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: L-galactose is converted to L-ascorbate via L-galactono-1,4-lactone using L-galactose dehydrogenase.
Figure 2: In vitro conversion of GDP-D-mannose to L-galactose and L-galactono-1,4-lactone by pea embryonicaxis extracts.
Figure 3: Comparison of the incorporation of D-[U-14C]glucose (open symbols) and D-[U-14C]mannose (closed symbols) into ascorbate by A. thaliana leaves.
Figure 4: A proposed pathway for the biosynthesis of L-ascorbic acid in plants.

Similar content being viewed by others

References

  1. Nishikimi, M., Fukuyama, R., Minoshima, S., Simizu, N. & Yagi, K. Cloning and chromosomal mapping of the human nonfunctional gene for L-gulono-γ-lactone oxidase, the enzyme for L-ascorbic and biosynthesis missing in man. J. Biol. Chem. 269, 13685–13688 (1994).

    CAS  PubMed  Google Scholar 

  2. Burns, J. J. in Metabolic Pathways2nd edn Vol. 1 (ed. Greenberg, D. M.) 394–411 (Academic, New York, (1967)).

    Book  Google Scholar 

  3. Smirnoff, N. The function and metabolism of ascorbic acid in plants. Ann. Bot. 78, 661–669 (1996).

    Article  CAS  Google Scholar 

  4. Foyer, C. H. in Antioxidants in Higher Plants (eds Alscher, R. G. & Hess, J. L.) 31–58 (CRC, Boca Raton, (1993)).

    Google Scholar 

  5. Horemans, N., Asard, H. & Caubergs, R. J. The role of ascorbate free radical as an electron acceptor to cytochrome b -mediated transmembrane electron transport in higher plants. Plant Physiol. 104, 1455–1458 (1994).

    Article  CAS  Google Scholar 

  6. Mapson, L. W. & Breslow, E. Biological synthesis of L-ascorbic acid: L-galactono-γ-lactone dehydrogenase. Biochem. J. 68, 395–406 (1958).

    Article  CAS  Google Scholar 

  7. Oba, K., Ishikawa, S., Nishikawa, M., Mizuno, H. & Yamamoto, T. Purification and properties of L-galactono-γ-lactone dehydrogenase, a key enzyme for ascorbic acid biosynthesis, from sweet potato roots. J. Biochem. 117, 120–124 (1995).

    Article  CAS  Google Scholar 

  8. Loewus, F. A. & Loewus, M. B. Biosynthesis and metabolism of L-ascorbic acid in plants. Crit. Rev. Plant Sci. 5, 101–119 (1987).

    Article  CAS  Google Scholar 

  9. Mapson, L. W. & Isherwood, F. A. Biological synthesis of L-ascorbic acid: the conversion of derivatives of D-galacturonic acid to L-ascorbate in plant extracts. Biochem. J. 64, 13–22 (1956).

    Article  CAS  Google Scholar 

  10. Loewus, F. A. Tracer studies of ascorbic acid formation in plants. Phytochemistry 2, 109–128 (1963).

    Article  CAS  Google Scholar 

  11. Saito, K., Nick, J. A. & Loewus, F. A. D-Glucosone and L-sorbosone, putative intermediates of L-ascorbic acid biosynthesis in detected bean and spinach leaves. Plant Physiol. 94, 1496–1500 (1990).

    Article  CAS  Google Scholar 

  12. Loewus, M. W., Bedgar, D. L., Saito, K. & Loewus, F. A. Conversion of L-sorbosone to L-ascorbic acid by a NADP+-dependent dehydrogenase in bean and spinach leaf. Plant Physiol. 94, 1492–1495 (1990).

    Article  CAS  Google Scholar 

  13. Maier, E. & Kurtz, G. D-galactose dehydrogenase from Pseudomonas fluorescens. Methods Enzymol. 89, 176–181 (1982).

    Article  CAS  Google Scholar 

  14. Schachter, H., Sarney, J., McGuire, E. J. & Roseman, S. Isolation of diphosphopyridine nucleotide-dependent L-fucose dehydrogenase from pork liver. J. Biol. Chem. 244, 4785–4792 (1969).

    CAS  PubMed  Google Scholar 

  15. Conter, P. F., Guimarães, M. F. & Veiga, L. A. Induction and repression of L-fucose dehydrogenase of Pullularia pullulans. Can. J. Microbiol. 30, 753–757 (1984).

    Article  CAS  Google Scholar 

  16. Kim, S.-T., Huh, W.-K., Kim, J-Y., Hwang, S-W. & Kang, S-O. D-Arabinose dehydrogenase and biosynthesis of erythroascorbate in Candida albicans. Biochim. Biophys. Acta 1297, 1–8 (1996).

    Article  Google Scholar 

  17. Roberts, R. M. The metabolism of D-mannose-14-C to polysaccharide in corn roots. Specific labelling of L-galactose, D-mannose, and L-fucose. Arch. Biochem. Biophys. 145, 685–692 (1971).

    Article  CAS  Google Scholar 

  18. Baydoun, E. A.-H. & Fry, S. C. [2-3H]Mannose incorporation in cultured plant cells: investigation of L-galactose residues of the primary wall. J. Plant Physiol. 132, 484–490 (1988).

    Article  CAS  Google Scholar 

  19. Barber, G. A. Observations on the mechanisms of the reversible epimerization of GDP-D-mannose to GDP-L-galactose by an enzyme from Chlorella pyrenidosa. J. Biol. Chem. 254, 7600–7603 (1979).

    CAS  PubMed  Google Scholar 

  20. Barber, G. A. Synthesis of L-galactose by plant enzyme systems. Arch. Biochem. Biophys. 147, 619–623 (1971).

    Article  CAS  Google Scholar 

  21. 1. Feingold, D. S. in Encyclopedia of Plant Physiology, Vol. 13A (eds Loewus, F. A. & Tanner, W.) 3–76 (Springer, Berlin, (1982)).

    Google Scholar 

  22. Roberts, R. M. & Harrer, E. Determination of L-galactose in polysaccharide material. Phytochemistry 12, 2679–2682 (1973).

    Article  CAS  Google Scholar 

  23. Harris, G. C. et al. Mannose metabolism in corn and its impact on leaf metabolites, photosynthetic gas exchange, and chlorophyll fluorescence. Plant Physiol. 82, 1081–1089 (1986).

    Article  CAS  Google Scholar 

  24. Conklin, P. L., Williams, E. H. & Last, R. L. Environmental stress sensitivity of an ascorbic acid-deficient Arabidopsis mutant. Proc. Natl Acad. Sci. USA 93, 9970–9974 (1996).

    Article  ADS  CAS  Google Scholar 

  25. Conklin, P. L., Pallanca, J. E., Last, R. L. & Smirnoff, N. L-Ascorbic acid metabolism in the ascorbate-deficient Arabidopsis mutant vtc1. Plant Physiol. 115, 1277–1285 (1997).

    Article  CAS  Google Scholar 

  26. Chen, Y-T., Isherwood, F. A. & Mapson, L. W. Quantitative estimation of ascorbic acid and related substances in biological extracts by separation on a paper chromatogram. Biochem. J. 55, 821–823 (1953).

    Article  CAS  Google Scholar 

  27. Andrews, M. A. Capillary gas-chromatographic analysis of monosaccharides: improvements and comparisons using trifluoroacetylation and trimethylsilylation of sugar O-benzyl and O-methyl oximes. Carbohydrate Res. 194, 1–19 (1989).

    Article  CAS  Google Scholar 

  28. Ghebragzabher, M., Ruffini, S., Monaldi, B. & Lato, M. Thin layer chromatography of monosaccharides. J. Chromatogr. 127, 133–162 (1976).

    Article  Google Scholar 

  29. Dawson, R. M. C., Elliott, D. C., Elliott, W. H. & Jones, K. M. (eds) Data for Biochemical Research2nd edn. (Clarendon, Oxford, (1969)).

    Google Scholar 

Download references

Acknowledgements

The research was supported by a BBSRC studentship (G.L.W.), a Nuffield Student Bursary (M.A.J.) and Zeneca Agrochemicals. We thank Nippon-Roche for the gift of L-sorbosone. Earlier work by J. Pallanca, funded by the BBSRC BOMRIP programme, provided a basis for this research. We thank M. Raymond for technical assistance; J.Kingdon and J. Hindley for growing the plants; and W. Schuch for his support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas Smirnoff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wheeler, G., Jones, M. & Smirnoff, N. The biosynthetic pathway of vitamin C in higher plants. Nature 393, 365–369 (1998). https://doi.org/10.1038/30728

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/30728

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing