Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Recognition of the four Watson–Crick base pairs in the DNA minor groove by synthetic ligands

Abstract

The design of synthetic ligands that read the information stored in the DNA double helix has been a long-standing goal at the interface of chemistry and biology1,2,3,4,5. Cell-permeable small molecules that target predetermined DNA sequences offer a potential approach for the regulation of gene expression6. Oligodeoxynucleotides that recognize the major groove of double-helical DNA via triple-helix formation bind to a broad range of sequences with high affinity and specificity3,4. Although oligonucleotides and their analogues have been shown to interfere with gene expression7,8, the triple-helix approach is limited to recognition of purines and suffers from poor cellular uptake. The subsequent development of pairing rules for minor-groove binding polyamides containing pyrrole (Py) and imidazole (Im) amino acids offers a second code to control sequence specificity9,10,11. An Im/Py pair distinguishes G·C from C·G and both of these from A·T/T·A base pairs9,10,11. A Py/Py pair specifies A,T from G,C but does not distinguish A·T from T·A9,10,11,12,13,14. To break this degeneracy, we have added a new aromatic amino acid, 3-hydroxypyrrole (Hp), to the repertoire to test for pairings that discriminate A·T from T·A. We find that replacement of a single hydrogen atom with a hydroxy group in a Hp/Py pairing regulates affinity and specificity by an order of magnitude. By incorporation of this third amino acid, hydroxypyrrole–imidazole–pyrrole polyamides form four ring-pairings (Im/Py, Py/Im, Hp/Py and Py/Hp) which distinguish all four Watson–Crick base pairs in the minor groove of DNA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chemical structures and space-filling models of the T·A and A·T base pairs as viewed from the minor groove of DNA.
Figure 2: Eight-ring hairpin polyamides containing three aromatic amino acids (Py, Hp, Im).
Figure 3: Quantitative DNase I footprint titration experiments.

Similar content being viewed by others

References

  1. Zimmer, C. & Wähnert, U. Nonintercalating DNA-binding ligands: specificty of the interaction and their use as tools in biophysical, biochemical and biological investigations of the genetic material. Prog. Biophys. Mol. Biol. 47, 31–112 (1986).

    Article  CAS  Google Scholar 

  2. Dervan, P. B. Design of sequence-specific DNA-binding molecules. Science 232, 464–471 (1986).

    Article  ADS  CAS  Google Scholar 

  3. Moser, H. E. & Dervan, P. B. Sequence-specific cleavage of double helical DNA by triple helix formation. Science 238, 645–650 (1987).

    Article  ADS  CAS  Google Scholar 

  4. Thuong, N. T. & Helene, C. Sequence-specific recognition and modification of double-helical DNA by oligonucleotides. Angew. Chem. Int. Edn Engl. 32, 666–690 (1993).

    Article  Google Scholar 

  5. Nielsen, P. E. Design of sequence-specific DNA-binding ligands. Chem. Eur. J. 3, 505–508 (1997).

    Article  CAS  Google Scholar 

  6. Gottesfeld, J. M., Neely, L., Trauger, J. W., Baird, E. E. & Dervan, P. B. Regulation of gene expression by small molecules. Nature 387, 202–205 (1997).

    Article  ADS  CAS  Google Scholar 

  7. Maher, J. L., Dervan, P. B. & Wold, B. Analysis of promoter-specific repression by triple-helical DNA complexes in a eukaryotic cell-free transcription system. Biochemistry 31, 70–81 (1992).

    Article  CAS  Google Scholar 

  8. Duvalentin, G., Thuong, N. T. & Helene, C. Specific-inhibition of transcription by triple helix-forming oligonucleotides. Proc. Natl Acad. Sci. USA 89, 504–508 (1992).

    Article  ADS  Google Scholar 

  9. Wade, W. S., Mrksich, M. & Dervan, P. B. Design of peptides that in the minor groove of DNA at 5′-(A,T)G(A,T)C(A,T)-3′ sequences by a dimeric side-by-side motif. J. Am. Chem. Soc. 114, 8783–8794 (1992).

    Article  CAS  Google Scholar 

  10. Mrksich, M.et al. Antiparallel side-by-side motif for sequence specific-recognition in the minor groove of DNA by the designed peptide 1-methylimidazole-2-carboxamidenetropsin. Proc. Natl Acad. Sci. USA 89, 7586–7590 (1992).

    Article  ADS  CAS  Google Scholar 

  11. Trauger, J. W., Baird, E. E. & Dervan, P. B. Recognition of DNA by designed ligands at subnanomolar concentrations. Nature 382, 559–561 (1996).

    Article  ADS  CAS  Google Scholar 

  12. Pelton, J. G. & Wemmer, D. E. Structural characterization of a 2-1 distamycin A-d(CGCAAATTTGGC) complex by two-dimensional NMR. Proc. Natl Acad. Sci. USA 86, 5723–5727 (1989).

    Article  ADS  CAS  Google Scholar 

  13. White, S., Baird, E. E. & Dervan, P. B. Effects of the A·T/T·A degeneracy of pyrrole-immidazole polyamide recognition in the minor groove of DNA. Biochemistry 35, 6147–6152 (1996).

    Google Scholar 

  14. White, S., Baird, E. E. & Dervan, P. B. On the pairing rules for recognition in the minor groove of DNA by pyrrole-imidazole polyamides. Chem. Biol. 4, 569–578 (1997).

    Article  CAS  Google Scholar 

  15. Seeman, N. C., Rosenberg, J. M. & Rich, A. Sequence specific recognition of double helical nucleic acids by proteins. Proc. Natl Acad. Sci. USA 73, 804–808 (1976).

    Article  ADS  CAS  Google Scholar 

  16. Steitz, T. A. Structural studies of protein-nucleic acid interaction: the sources of sequence-specific binding. Quart. Rev. Biophys. 23, 203–280 (1990).

    Article  Google Scholar 

  17. Mrksich, M. & Dervan, P. B. Recognition in the minor-groove of DNA at 5′-(A,T)GCGC(A,T)-3′ by a 4-ring tripeptide dimer — reversal of the specificity of the natural product distamycin. J. Am. Chem. Soc. 117, 3325–3332 (1995).

    Article  CAS  Google Scholar 

  18. Swalley, S. E., Baird, E. E. & Dervan, P. B. Discrimination of 5′-GGGG-3′, 5′-GCGC-3′, and 5′-GGCC-3′ sequences in the minor groove of DNA by eight-ring hairpin polyamides. J. Am. Chem. Soc. 119, 6953–6961 (1997).

    Article  CAS  Google Scholar 

  19. Kielkopf, C. L., Baird, E. E., Dervan, P. B. & Rees, D. C. Structural basis for G·C recognition in the DNA minor groove. Nature Struct. Biol (in the press).

  20. Pilch, D. S.et al. Binding of a hairpin polyamide in the minor-groove of DNA — sequence-specific enthalpic discrimination. Proc. Natl Acad. Sci. USA 93, 8306–8311 (1996).

    Article  ADS  CAS  Google Scholar 

  21. Wong, J. M. & Bateman, E. TBP-DNA interactions in the minor groove discriminate between A:T and T:A base pairs. Nucl. Acids Res. 22, 1890–1896 (1994).

    Article  CAS  Google Scholar 

  22. Brenowitz, M., Senear, D. F., Shea, M. A. & Ackers, G. K. Quantitative DNase footprint titration — a method for studying protein-DNA interactions. Methods Enzymol. 130, 132–181 (1986).

    Article  CAS  Google Scholar 

  23. Swalley, S. E., Baird, E. E. & Dervan, P. B. Recognition of a 5′-(A,T)GGG(A,T)2-3′ sequence in the minor groove of DNA by an 8-ring hairpin polyamide. J. Am. Chem. Soc. 118, 8198–8206 (1996).

    Article  CAS  Google Scholar 

  24. Kim, Y., Geiger, J. H., Hahn, S. & Sigler, P. B. Crystal Structure of a yeast TBP/TATA-box complex. Nature 365, 512–520 (1993).

    Article  ADS  CAS  Google Scholar 

  25. Gartenberg, M. R. & Crothers, D. M. DNA-sequence determinants of CAP-induced bending and protein-binding affinity. Nature 333, 824–829 (1988).

    Article  ADS  CAS  Google Scholar 

  26. Sluka, J. P., Horvath, S. J., Glasgow, A. C., Simon, M. I. & Dervan, P. B. Importance of minor-groove contacts for recognition of DNA by the binding domain of Hin recombinase. Biochemistry 29, 6551–6561 (1990).

    Article  CAS  Google Scholar 

  27. Ades, S. E. & Sauer, R. T. Specificity of minor-groove and major-groove interactions in a homeodomain-DNA complex. Biochemistry 34, 14601–14608 (1995).

    Article  CAS  Google Scholar 

  28. Baird, E. E. & Dervan, P. B. Solid phase synthesis of polyamides containing imidazole and pyrrole amino acids. J. Am. Chem. Soc. 118, 6141–6146 (1996).

    Article  CAS  Google Scholar 

  29. Kelly, J. J., Baird, E. E. & Dervan, P. B. Binding site size limit of the 2:1 pyrrole–imidazole polyamide-DNA motif. Proc. Natl Acad. Sci. USA 93, 6981–6985 (1996).

    Article  ADS  CAS  Google Scholar 

  30. Choo, Y. & Klug, A. Physical basis of a protein–DNA recognition code. Curr. Opin. Struct. Biol. 7, 117–125 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the NIH for research support and National Research service Awards to S.W. and J.W.S., to the NSF for a predoctorial fellowship to S.W., to J. Edward Richter for an undergraduate fellowship to J.M.T., and to the HHMI for a predictorial fellowship to E.E.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter B. Dervan.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Cite this article

White, S., Szewczyk, J., Turner, J. et al. Recognition of the four Watson–Crick base pairs in the DNA minor groove by synthetic ligands. Nature 391, 468–471 (1998). https://doi.org/10.1038/35106

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35106

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing