Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Contribution of Southern Ocean surface-water stratification to low atmospheric CO2 concentrations during the last glacial period

Abstract

The nitrogen-isotope record preserved in Southern Ocean sediments, along with several geochemical tracers for the settling fluxes of biogenic matter, reveals patterns of past nutrient supply to phytoplankton and surface-water stratification in this oceanic region. Areal averaging of these spatial patterns indicates that reduction of the CO2 ‘leak’ from ocean to atmosphere by increased surface-water stratification south of the Polar Front made a greater contribution to the lowering of atmospheric CO2 concentration during the Last Glacial Maximum than did the increased export of organic carbon from surface to deep waters occurring further north.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of geochemical data for Holocene and last-glacial timesderived from deep-sea sediment cores.
Figure 2: Difference between last-glacial and Holocene values of geochemical data.
Figure 3: Age dependence of geochemical data from two sediment cores from theIndian sector of the Southern Ocean.
Figure 4: Bulk sediment δ15N.
Figure 5: Changes in export flux, vertical mixing and nutrient utilization inferred for the Atlantic and central Indian sector of the Southern Ocean.

Similar content being viewed by others

References

  1. Sarmiento, J. L. & Toggweiler, R. Anew model for the role of the oceans in determining atmospheric p CO 2 Nature 308, 621–624 (1984).

    ADS  CAS  Google Scholar 

  2. Siegenthaler, U. & Wenk, T. Rapid atmospheric CO2variations and ocean circulation. Nature 308, 624–626 (1984).

    ADS  CAS  Google Scholar 

  3. Knox, F. & McElroy, M. B. Changes in atmospheric CO2: Influence of the marine biota at high latitude. J. Geophys. Res. 89, 4629–4637 (1984).

    Google Scholar 

  4. Toggweiler, R. & Sarmiento, J. L. in The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present (eds Sundquist, E. T. & Broecker, W. S.) 163–184 (Vol. 32, Geophys. Monogr. Ser., Am. Geophys. Union, Washington DC, (1985)).

    Google Scholar 

  5. Wenk, T. & Siegenthaler, U. in The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present (eds Sundquist, E. T. & Broecker, W. S.) 185–194 (Vol. 32, Geophys. Monogr. Ser., Am. Geophys. Union, Washington DC, (1985)).

    Google Scholar 

  6. Knox-Ennever, F. & McElroy, M. B. in The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present (eds Sundquist, E. T. & Broecker, W. S.) 154–162 (Vol. 32, Geophys. Monogr. Ser., Am. Geophys. Union, Washington DC, (1985)).

    Google Scholar 

  7. Kumar, N. et al. Increased biological productivity and export production in the glacial southern ocean. Nature 378, 675–680 (1995).

    ADS  CAS  Google Scholar 

  8. Altabet, M. A. et al. Seasonal and depth-related changes in the source of sinking particles in the North Atlantic detected using 15N/14N ratios. Nature 354, 136–139 (1991).

    ADS  Google Scholar 

  9. Francois, R., Altabet, M. A. & Burckle, L. D. Glacial to interglacial changes in surface nitrate utilization in the Indian sector of the southern ocean as recorded by sediment δ15N. Paleoceanography 7, 589–606 (1992).

    Google Scholar 

  10. Altabet, M. A. & Francois, R. Sedimentary nitrogen isotopic ratio as a recorder for surface ocean nitrate utilization. Glob. Biogeochem. Cycles 8, 103–116 (1994).

    Google Scholar 

  11. Altabet, M. A. & Francois, R. in Carbon Cycling in the Glacial Ocean: Constraints on the Ocean's Role in Global Change (eds Zahn, R., Pedersen, T. F., Kaminski, M. & Labeyrie, L. D.) 281–306 (Vol. 17, NATO AST Ser. I, Springer, Berlin, (1994)).

    Google Scholar 

  12. Mortlock, R. A. et al. Evidence for lower productivity in the Antarctic Ocean during the last glaciation. Nature 351, 220–223 (1991).

    ADS  Google Scholar 

  13. Charles, C. D. et al. Biogenic opal in southern ocean sediments over the last 450,000 years: Implications for surface water chemistry and circulation. Paleoceanography 6, 697–728 (1991).

    Google Scholar 

  14. Bareille, G. et al. Biogenic silica accumulation rate during the Holocene in the southeastern Indian Ocean. Mar. Chem. 35, 537–551 (1991).

    Google Scholar 

  15. Suman, D. O. & Bacon, M. P. Variations in Holocene sedimentation in the North American basin determined from 230Th measurements. Deep-Sea Res. 36, 869–878 (1989).

    Google Scholar 

  16. Francois, R., Bacon, M. P. & Suman, D. O. Thorium-230 profiling in deep-sea sediments: High-resolution records of flux and dissolution of carbonate in the equatorial Atlantic during the last 24,000 years. Paleoceanography 5, 761–787 (1990).

    Google Scholar 

  17. Kumar, N. et al. 231Pa/230Th ratios in sediments as a proxy for the past changes in southern ocean productivity. Nature 362, 45–48 (1993).

    ADS  CAS  Google Scholar 

  18. van Bennekom, A. J. et al. Primary productivity and the silica cycle in the southern ocean (Atlantic sector). Palaeogeogr. Palaeoclimatol. Palaeoecol. 67, 19–30 (1988).

    Google Scholar 

  19. Frank, M. Reconstruction of late Quaternary environmental conditions applying the natural radionuclides 230Th, 10Be, 231Pa and 238U: A study of deep-sea sediments from the eastern sector of the Antarctic Circumpolar Current system.Thesis, Heidelberg Univ.((1995)).

  20. Burckle, L. H. Diatom distribution and paleoceanographic reconstruction in the southern ocean: Implications for late Quaternary paleoceanography. Mar. Micropaleontol. 9, 241–261 (1984).

    Google Scholar 

  21. Morley, J. J. Variations in high-latitude oceanographic fronts in the southern Indian Ocean: An estimation based on faunal changes. Paleoceanography 4, 547–554 (1989).

    Google Scholar 

  22. Sullivan, C. W. et al. Distribution of phytoplankton blooms in the southern ocean. Science 262, 1832–1837 (1993).

    Google Scholar 

  23. Bacon, M. P. Tracers of chemical scavenging in the ocean: boundary effects and large scale chemical fractionation. Phil. Trans. R. Soc. Lond. A 320, 187–200 (1988).

    Google Scholar 

  24. Anderson, R. F. et al. Boundary scavenging in the Pacific Ocean: a comparison of 10Be and 231Pa. Earth Planet. Sci. Lett. 96, 287–304 (1990).

    Google Scholar 

  25. Yu, E.-F. Variations in the particulate flux of 230Th and 231Pa and paleoceanographic applications of the 231Pa/230Th ratio.Thesis, WHOI-MIT((1994)).

  26. Walter, H.-J., Rutgers van der Loeff, M. M. & Hoeltzen, H. Enhanced scavenging of 231Pa relative to 230Th in the south Atlantic south of the Polar Front: Implications for the use of the 231Pa/230Th ratio as a paleoproductivity proxy. Earth Planet. Sci. Lett. 149, 85–100 (1997).

    Google Scholar 

  27. Yu, E.-F., Francois, R. & Bacon, M. P. Similar rates of modern and last-glacial ocean thermohaline circulation inferred from radiochemical data. Nature 379, 689–694 (1996).

    ADS  CAS  Google Scholar 

  28. Klinkhammer, G. & Palmer, M. R. Uranium in the oceans, where it goes and why. Geochim. Cosmochim. Acta 55, 1799–1806 (1991).

    Google Scholar 

  29. Bareille, G. et al. Glacial-Interglacial changes in the accumulation rates of major biogenic components in southern Indian Ocean sediments. J. Mar. Syst. (in the press).

  30. Dymond, J., Suess, E. & Lyle, M. Barium in deep-sea sediment: A geochemical indicator of paleoproductivity. Paleoceanography 7, 163–181 (1992).

    Google Scholar 

  31. Francois, R. et al. Biogenic Ba fluxes to the deep-sea: Implications for the paleoproductivity reconstruction. Glob. Biogeochem. Cycles 9, 289–303 (1995).

    Google Scholar 

  32. Nurnberg, C. C. Bariumfluss und sedimentation im sudlichen Sudatlantik-Hinweise auf produktivitatsanderungen im Quartar.Thesis, Kiel Univ.((1995)).

  33. Sigman, D. M. et al. in ASLO, Aquatic Sci. Meeting Abstr.Santa Fe, New Mexico, 304 ((1997)).

    Google Scholar 

  34. Sigman, D. M. The role of biological production in Pleistocene atmospheric carbon dioxide variations and the nitrogen isotope dynamics of the Southern Ocean.Thesis, WHOI-MIT((1997)).

  35. GEOSECS Sections and Profiles (National Science Foundation, WashingtonD, (1982)).

  36. Sigman, D. M. et al. Diatom microfossil nitrogen isotopic composition supports the hypothesis of higher nitrate utilization in the glacial southern ocean. Eos 78, S190 (1997).

    Google Scholar 

  37. Shemesh, A. et al. Isotopic evidence for reduced productivity in the glacial southern ocean. Science 262, 407–410 (1993).

    Google Scholar 

  38. Morley, J. J. & Hays, J. D. Oceanographic conditions associated with the high abundance of radiolarian Cyclodophora davisiana. Earth Planet. Sci. Lett. 66, 63–72 (1983).

    Google Scholar 

  39. Yang, J. & Honjo, S. J. Modeling the near-freezing dichothermal layer in the sea of Okhotsk and its interannual variations. J. Geophys. Res. 101, 16421–16433 (1996).

    Google Scholar 

  40. Kohfeld, K. E., Fairbanks, R. G., Smith, S. L., Walsh, I. D. Neogloboquadrina pachyderma (sinistral coiling) as paleoceanographic tracers in polar oceans: Evidence from Northeast Water Polynya plankton tows, sediment traps and surface sediments. Paleoceanography 11, 679–700 (1996).

    Google Scholar 

  41. Charles, C. D. & Fairbanks, R. G. in Geological History of the Polar Oceans: Arctic versus Antarctic (eds Bleil, U. & Thiede, J.) 519–538 (Kluwer Academic, Norwell, MA, (1990)).

    Google Scholar 

  42. Sigman, D. & McCorkle, D. Comparing the closed and open system effects of changes in low latitude biological production using a reservoir model of the ocean carbon cycle. Eos 75, 367 (1994).

    Google Scholar 

  43. Keir, R. S. On the late Pleistocene ocean geochemistry and circulation. Paleoceanography 3, 413–445 (1988).

    Google Scholar 

  44. Lynch-Stieglitz, J., van Geen, A. & Fairbanks, R. G. Interocean exchange of Glacial North Atlantic Intermediate Water: Evidence from Subantarctic Cd/Ca and carbon isotope measurements. Paleoceanography 11, 191–202 (1996).

    Google Scholar 

  45. Michel, E. et al. Could deep Subantarctic convection feed the world deep basins during the last glacial maximum? Paleoceanography 10, 927–942 (1995).

    Google Scholar 

  46. Kellogg, T. B. Glacial-Interglacial changes in global deepwater circulation. Paleoceanography 2, 259–271 (1987).

    Google Scholar 

  47. McCorkle, D. C. et al. Evidence of a dissolution effect on benthic foraminiferal shell chemistry: δ13C, Cd/Ca, Ba/Ca, and Sr/Ca results from the Ontong Java Plateau. Paleoceanography 10, 699–714 (1995).

    Google Scholar 

  48. Howard, W. R. & Prell, W. L. Late Quaternary CaCO3production and preservation in the Southern Ocean: Implications for oceanic and atmospheric carbon cycling. Paleoceanography 9, 453–482 (1994).

    Google Scholar 

  49. Bareille, G. Flux sedimentaires: paléproductivité et paléocirculation de l'Océan Austral au cours des 150,000 dernières années.Thesis, Univ. Bordeaux((1994)).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger François.

Rights and permissions

Reprints and permissions

About this article

Cite this article

François, R., Altabet, M., Yu, EF. et al. Contribution of Southern Ocean surface-water stratification to low atmospheric CO2 concentrations during the last glacial period. Nature 389, 929–935 (1997). https://doi.org/10.1038/40073

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/40073

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing