Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A self-consistent phase diagram for supercooled water

Abstract

MANY of the low-temperature thermodynamic properties of water, such as heat capacity and isothermal compressibility, exhibit anomalous behaviour that tends to diverge in the supercooled state1,2. On the basis of molecular dynamics simulations3,4, these phenomena have recently been attributed to the influence of a critical point terminating the temperature–pressure coexistence line separating low- and high-density amorphous ices. But the fact that water tends to lose its anomalous behaviour5 in the pressure range predicted for the new critical point poses problems for such an interpretation. Moreover, the phase diagram derived from these simulations contrasts sharply with another conjecture, whereby it is argued that at atmospheric pressure no thermodynamically continuous path exists between low-density amorphous ice and normal water6. Here I report the results of a series of molecular dynamics simulations at constant (approximately atmospheric) pressure, which show that both ideas can be reconciled by relocating the critical point to negative pressures. The resulting phase diagram is not only simpler, but also accounts for the transition of water from a fragile to a strong liquid in the supercoooled region7,8.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Speedy, R. J. & Angell, C. A. J. chem. Phys. 65, 851–858 (1976).

    Article  ADS  CAS  Google Scholar 

  2. Angell, C. A., Oguni, M. & Sichina, W. J. J. phys. Chem. 86, 998–1002 (1982).

    Article  CAS  Google Scholar 

  3. Poole, P. H., Sciortino, F., Essmann, U. & Stanley, H. E. Nature 360, 324–328 (1992).

    Article  ADS  CAS  Google Scholar 

  4. Poole, P. H., Sciortino, F., Essmann, U. & Stanley, H. E. Phys. Rev. E48, 3799–3817 (1993).

    ADS  CAS  Google Scholar 

  5. Eisenberg, D. & Kauzmann, W. The Structure and Properties of Water (Oxford Univ. Press, London, 1969).

    Google Scholar 

  6. Speedy, R. J. J. phys. Chem. 96, 2322–2325 (1992).

    Article  CAS  Google Scholar 

  7. Angell, C. A. J. phys. Chem. 97, 6339–6341 (1993).

    Article  CAS  Google Scholar 

  8. Angell, C. A. in Hydrogen Bond Networks (eds Bellissent-Funel, M-. C. & Dore, J. C.) 3–22 (Kluwer, Dortrecht, 1994).

    Book  Google Scholar 

  9. Nosé, S. Molec. Phys. 52, 255–268 (1984).

    Article  ADS  Google Scholar 

  10. Nosé, S. J. chem. Phys. 81, 511–519 (1984).

    Article  ADS  Google Scholar 

  11. Andersen, H. C. J. chem. Phys. 72, 2384–2393 (1980).

    Article  ADS  CAS  Google Scholar 

  12. Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. J. chem. Phys. 79, 926–935 (1983).

    Article  ADS  CAS  Google Scholar 

  13. Poole, P. H., Essmann, U., Sciortino, F. & Stanley, H. E. Phys. Rev. E48, 4605–4610 (1993).

    ADS  Google Scholar 

  14. Stillinger, F. H. & Weber, T. A. J. phys. Chem. 87, 2833–2840 (1983).

    Article  CAS  Google Scholar 

  15. Stillinger, F. H. J. chem. Phys. 88, 7818–7825 (1988).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  16. Hallbrucker, A. & Mayer, E. J. phys. Chem. 91, 503–505 (1987).

    Article  CAS  Google Scholar 

  17. Stanley, H. E. et al. Physica A205, 122–139 (1994).

    Article  Google Scholar 

  18. Ponyatovskii, E. G., Sinitsyn, V. V. & Pozdnyakova, T. A. JETP Lett. 60, 360–364 (1994).

    ADS  Google Scholar 

  19. Bellissent-Funel, M.-C. & Bosio, L. J. chem. Phys. 102, 3727–3735 (1995).

    Article  ADS  CAS  Google Scholar 

  20. Poole, P. H., Sciortino, F., Grande, T., Stanley, H. E. & Angell, C. A. Phys. Rev. Lett. 73, 1632–1635 (1994).

    Article  ADS  CAS  Google Scholar 

  21. Mishima, O., Colvert, L. D. & Whalley, E. Nature 310, 393–394 (1984).

    Article  ADS  CAS  Google Scholar 

  22. Mishima, O., Colvert, L. D. & Whalley, E. Nature 314, 76–78 (1985).

    Article  ADS  CAS  Google Scholar 

  23. Speedy, R. J. J. phys. Chem. 86, 982–991 (1982).

    Article  CAS  Google Scholar 

  24. Sceats, M. S. & Rice, S. A. J. chem. Phys. 72, 3260–3262 (1980).

    Article  ADS  CAS  Google Scholar 

  25. Ohmine, I. & Tanaka, H. J. chem. Phys. 93, 8138–8147 (1990).

    Article  ADS  CAS  Google Scholar 

  26. Kauzmann, W. Chem. Rev. 43, 219–256 (1948).

    Article  CAS  Google Scholar 

  27. Stanley, H. E. & Teixeira, J. J. chem. Phys. 73, 3404–3422 (1980).

    Article  ADS  MathSciNet  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanaka, H. A self-consistent phase diagram for supercooled water. Nature 380, 328–330 (1996). https://doi.org/10.1038/380328a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/380328a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing