Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A nuclear 'fossil' of the mitochondrial D-loop and the origin of modern humans

Abstract

MAMMALIAN mitochondria! DNA sequences evolve more rapidly than nuclear sequences1. Although the rapid rate of evolution is an advantage for the study of closely related species and populations, it presents a problem in situations where related species, used as outgroups in phylogenetic analyses, have accumulated so much change that multiple substitutions obliterate the phylogenetic information2. However, mitochondrial DNA sequences are frequently inserted into the nuclear genome3, where they presumably evolve as nuclear pseudogene sequences and therefore more slowly than their mitochondria! counterparts. Such sequences thus represent molecular 'fossils' that could shed light on the evolution of the mitochondrial genome and could be used as outgroups in situations where no appropriate outgroup species exist. Here we show that human chromosome 11 carries a recent integration of the mitochondrial control region that can be used to gain further insight into the origin of the human mitochondrial gene pool.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Brown, W. M., Prager, E. M., Wang, A. & Wilson, A. C. J. molec. Evol. 18, 225–239 (1982).

    Article  ADS  CAS  Google Scholar 

  2. Maddison, D. R., Ruvolo, M. & Swofford, D. L. Syst. Biol. 41, 111–124 (1992).

    Article  Google Scholar 

  3. Zullo, S., Sieu, L. L., Slightom, J. L., Hadler, H. I. & Eisenstadt, J. M. J. molec. Biol. 221, 1223–1235 (1991).

    CAS  PubMed  Google Scholar 

  4. Cann, R. L., Stoneking, M. & Wilson, A. C. Nature 325, 31–36 (1987).

    Article  ADS  CAS  Google Scholar 

  5. Vigilant, L., Stoneking, M., Harpending, H., Hawkes, K. & Wilson, A. C. Science 253, 1503–1507 (1991).

    Article  ADS  CAS  Google Scholar 

  6. Templeton, A. R. Science 255, 737 (1992).

    Article  ADS  CAS  Google Scholar 

  7. Hedges, S. B., Kumar, S., Tamura, K. & Stoneking, M. Science 255, 737–739 (1992).

    Article  ADS  CAS  Google Scholar 

  8. Maddison, D. R. Syst. Zool. 40, 355–363 (1991).

    Article  Google Scholar 

  9. Ruvolo, M., Disotell, T. R., Allard, M. W., Brown, W. M. & Honeycutt, R. L. Proc. natn. Acad. Sci. U.S.A 88, 1570–1574 (1991).

    Article  ADS  CAS  Google Scholar 

  10. Gill, P., Jeffreys, A. J. & Werrett, D. J. Nature 318, 577–579 (1985).

    Article  ADS  CAS  Google Scholar 

  11. Anderson, S. et al. Nature 290, 457–465 (1981).

    Article  ADS  CAS  Google Scholar 

  12. Tapper, D. P. & Clayton, D. A. J. biol. Chem. 256, 5106–5115 (1981).

    Google Scholar 

  13. Doda, J. N., Wright, C. T. & Clayton, D. A. Proc. natn. Acad. Sci. U.S.A. 78, 6116–6120 (1981).

    Article  ADS  CAS  Google Scholar 

  14. Pult, I. et al. Biol. Chem. Hoppe-Seyler 375, 837–840 (1994).

    CAS  PubMed  Google Scholar 

  15. Nei, M. Molecular Evolutionary Genetics (Columbia Univ. Press, New York, 1987).

    Google Scholar 

  16. Ward, R. H., Frazier, B. L., Dew-Jager, K. & Pääbo, S. Proc. natn. Acad. Sci. U.S.A. 88, 8720–8724 (1991).

    Article  ADS  CAS  Google Scholar 

  17. Lundstrom, R., Tavaré, S. & Ward, R. H. Proc. natn. Acad. Sci. U.S.A. 89, 5961–5965 (1992).

    Article  ADS  CAS  Google Scholar 

  18. Morin, P. A., Moore, J. J., Chakraborty, R., Jin, L., Goodall, J. & Woodruff, D. S. Science 285, 1193–1201 (1994).

    Article  ADS  Google Scholar 

  19. Sambrook, J., Fritch, E. F. & Maniatis, T. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, New York, 1989).

    Google Scholar 

  20. Pena, S. D. J. et al. Proc. natn. Acad. Sci. U.S.A. 91, 1946–1949 (1994).

    Article  ADS  CAS  Google Scholar 

  21. Felsenstein, J. Phylip version 3.5p (Univ. Washington, Seattle, 1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zischler, H., Geisert, H., von Haeseler, A. et al. A nuclear 'fossil' of the mitochondrial D-loop and the origin of modern humans. Nature 378, 489–492 (1995). https://doi.org/10.1038/378489a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/378489a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing