Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Constraints on the origin of the Moon's atmosphere from observations during a lunar eclipse

Abstract

THE properties of the Moon's rarefied atmosphere, which can be traced through observations of sodium and potassium1-4, provide important insights into the formation and maintenance of atmospheres on other primitive Solar System bodies5-7. The lunar atmosphere is believed to be composed of atoms from the surface rocks and soil, which might have been sputtered by micrometeorites8, by ions in the solar wind9, or by photons10,11. It might also form by the evaporation of atoms from the hot, illuminated surface10,11. Here we report the detection of sodium emission from the Moon's atmosphere during a total lunar eclipse (which occurs when the Moon is full). The sodium atmosphere is considerably more extended at full Moon than expected—it extends to at least nine lunar radii—and its brightness distribution is incompatible with sources involving either solará¤-wind or micrometeorite sputtering. This leaves photon sputtering or thermal desorption as the preferred explanations for the lunar atmosphere, and suggests that sunlight might also be responsible for the transient atmospheres of other primitive bodies (such as Mercury).

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Potter, A. E. & Morgan, T. H. Science 241, 675–680 (1988).

    Article  ADS  CAS  Google Scholar 

  2. Potter, A. E. & Morgan, T. H. Geophys. Res. Lett. 15, 1515–1518 (1988).

    Article  ADS  CAS  Google Scholar 

  3. Tyler, A., Kozlowski, R. & Hunten, D. Geophys. Res. Lett. 15, 1141–1144 (1988).

    Article  ADS  CAS  Google Scholar 

  4. Morgan, T. & Stern, S. A. Eos 72, 225–228 (1991).

    Article  ADS  Google Scholar 

  5. Sprague, A. L. Icarus 84, 93–105 (1990).

    Article  ADS  Google Scholar 

  6. A'Hearn, M. & Feldman, P. D. Icarus 98, 54–60 (1992).

    Article  ADS  CAS  Google Scholar 

  7. Hall, D. T., Strobel, D. F., Feldman, P. D., McGrath, M. A. & Weaver, H. A. Nature 373, 677–679 (1995).

    Article  ADS  CAS  Google Scholar 

  8. Morgan, T. & Shemansky, D. J. geophys. Res. 96, 1351–1367 (1991).

    Article  ADS  Google Scholar 

  9. Potter, A. E. & Morgan, T. Geophys. Res. Lett. 21, 2263–2266 (1994).

    Article  ADS  CAS  Google Scholar 

  10. Kozlowski, R. W. H., Sprague, A. L. & Hunten, D. M. Geophys. Res. Lett. 17, 2253–2256 (1990).

    Article  ADS  Google Scholar 

  11. Sprague, A., Kozlowski, R., Hunten, D., Wells, W. & Grosse, F. Icarus 96, 27–42 (1992).

    Article  ADS  CAS  Google Scholar 

  12. Stern, S. A. & Flynn, B. C. Astr. J. 109, 835–841 (1995).

    Article  ADS  CAS  Google Scholar 

  13. Mendillo, M., Flynn, B. & Baumgardner, J. Adv. Space Res. 13, 313–319 (1993).

    Article  ADS  CAS  Google Scholar 

  14. Mendillo, M., Baumgardner, J. & Flynn, B. Geophys. Res. Lett. 18, 2097–2100 (1991).

    Article  ADS  CAS  Google Scholar 

  15. Flynn, B. & Mendillo, M. Science 261, 184–186 (1993).

    Article  ADS  CAS  Google Scholar 

  16. Ip, W.-H. Geophys. Res. Lett. 18, 2093–2096 (1991).

    Article  ADS  CAS  Google Scholar 

  17. Smyth, W. H. & Marconi, M. L. Astrophys. J. 443, 371–392 (1995).

    Article  ADS  CAS  Google Scholar 

  18. Flynn, B. & Mendillo, M. J. geophys. Res. (in the press).

  19. Elford, W. G. & Hawkins, G. S. Res. Rep. no. 9 (Harvard Radio Meteor Project, Harvard Univ., 1964).

  20. Smyth, W. H. & Marconi, M. L. Astropnys. J. 441, 839–864 (1995).

    Article  ADS  CAS  Google Scholar 

  21. Sprague, A. L. thesis, Univ. Arizona (1990).

  22. Papagiannis, M. D. Space Physics and Astronomy 94–95 (Gordon & Breach, New York, 1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mendillo, M., Baumgardner, J. Constraints on the origin of the Moon's atmosphere from observations during a lunar eclipse. Nature 377, 404–406 (1995). https://doi.org/10.1038/377404a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/377404a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing