Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Crystal structure of Thermus aquaticus DNA polymerase

Abstract

THE DNA polymerase from Thermus aquaticus (Taq polymerase), famous for its use in the polymerase chain reaction, is homologous to Eschenchia coli DNA polymerase I (pol I) (ref. 1). Like pol I, Taq polymerase has a domain at its amino terminus (residues 1-290) that has 5' nuclease activity and a domain at its carboxy terminus that catalyses the polymerase reaction. Unlike pol I, the intervening domain in Taq polymerase has lost the editing 3′-5′ exonuclease activity. Although the structure of the Klenow fragment of pol I has been known for ten years2, that of the intact pol I has proved more elusive. The structure of Taq polymerase determined here at 2.4 Å resolution shows that the structures of the polymerase domains of the thermostable enzyme and of the Klenow fragment are nearly identical, whereas the catalytically critical carboxylate residues that bind two metal ions are missing from the remnants of the 3′-5′-exonuclease active site of Taq polymerase. The first view of the 5′ nuclease domain, responsible for excising the Okazaki RNA in lagging-strand DNA replication, shows a cluster of conserved divalent metal-ion-binding carboxylates at the bottom of a cleft. The location of this 5′-nuclease active site some 70 A from the polymerase active site in this crystal form highlights the unanswered question of how this domain works in concert with the polymerase domain to produce a duplex DNA product that contains only a nick.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lawyer, F. C. et al. J. biol. Chem. 264, 6427–6427 (1989).

    CAS  Google Scholar 

  2. Ollis, D. L., Brick, P., Hamlin, R., Xuong, N. G. & Steitz, T. A. Nature 313, 762–766 (1985).

    Article  ADS  CAS  Google Scholar 

  3. Derbyshire, V. et al. Science 240, 199–201 (1988).

    Article  ADS  CAS  Google Scholar 

  4. Derbyshire, V., Grindley, N. D. F. & Joyce, C. M. EMBO J. 10, 17–24 (1991).

    Article  CAS  Google Scholar 

  5. Lundquist, R. C. & Olivera, B. M. Cell 31, 53–60 (1982).

    Article  CAS  Google Scholar 

  6. Gutman, P. D. & Minton, K. W. Nucleic Acids Res. 21, 4406–4407 (1993).

    Article  CAS  Google Scholar 

  7. Lyamichev, V., Brow, M. A. D. & Dahlberg, J. E. Science 260, 778–783 (1993).

    Article  ADS  CAS  Google Scholar 

  8. Freemont, P. S., Friedman, J. M., Beese, L. S., Sanderson, M. R. & Steitz, T. A. Proc. natn. Acad. Sci. U.S.A. 85, 8924–8928 (1988).

    Article  ADS  CAS  Google Scholar 

  9. Beese, L. S. & Steitz, T. A. EMBO J. 10, 25–33 (1991).

    Article  CAS  Google Scholar 

  10. Kim, E. & Wyckoff, H. H. J. molec. Biol. 218, 449–464 (1991).

    Article  CAS  Google Scholar 

  11. Kankare, J. et al. Protein Engng 7, 823–830 (1994).

    Article  CAS  Google Scholar 

  12. Teplyakov, A. et al. Protein Sci. 7, 1098–1107 (1994).

    Article  Google Scholar 

  13. Yang, W., Hendrickson, W. A., Crouch, R. J. & Satow, Y. Science 249, 1398–1405 (1990).

    Article  ADS  CAS  Google Scholar 

  14. Davies, J. F., Hostomska, Z., Homstomsky, Z., Jordan, S. R. & Matthews, D. A. Science 252, 88–95 (1991).

    Article  ADS  CAS  Google Scholar 

  15. Steitz, T. A. Curr. Opin. struct. Biol. 3, 31–38 (1993).

    Article  CAS  Google Scholar 

  16. Pelletier, H., Sawaya, M. R., Kumar, A., Wilson, S. H. & Kraut, J. Science 264, 1891–1903 (1994).

    Article  ADS  CAS  Google Scholar 

  17. Steitz, T. A., Smerdon, S. J. Jäger, J. & Joyce, C. M. Science 266, 2022–2025 (1994).

    Article  ADS  CAS  Google Scholar 

  18. Ariyoshi, M. et al. Cell 78, 1063–1072 (1994).

    Article  CAS  Google Scholar 

  19. Dyda, F. et al. Science 266, 1981–1986 (1994).

    Article  ADS  CAS  Google Scholar 

  20. Yang, W. & Steitz, T. A. Structure 3, 131–134 (1995).

    Article  CAS  Google Scholar 

  21. Eom, S. H. et al. Acta crystallogr. D51 (in the press).

  22. Matthews, B. C. W. J. molec. Biol. 33, 491–497 (1968).

    Article  CAS  Google Scholar 

  23. Fitzgerald, P. M. D. J. appl. Crystallogr. 21, 273–278 (1988).

    Article  CAS  Google Scholar 

  24. Brünger, A. T. X.PLOR, version 3.1 (Yale Univ. Press, New Haven, CT, 1992).

    Google Scholar 

  25. Otwinowski, Z. ML—PHARE CCP4 Proc. 80–88 (Daresbury Laboratory, Warrington, 1991).

  26. Zhang, K. Y. J. & Main, P. Acta crystallogr. A46, 377–381 (1990).

    Article  Google Scholar 

  27. Jones, T. A. & Kjeldgaard, M. O version 5.9 (Department of Molecular Biology, BMC, Uppsala Univ., Sweden, 1993).

  28. Kraulis, P. J. J. appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  29. Merrit, E. A. & Murphy, M. E. P. Acta crystallogr. D50, 869–873 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, Y., Eom, S., Wang, J. et al. Crystal structure of Thermus aquaticus DNA polymerase. Nature 376, 612–616 (1995). https://doi.org/10.1038/376612a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/376612a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing