Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Habitat destruction and the extinction debt

Abstract

HABITAT destruction is the major cause of species extinctions1–3. Dominant species often are considered to be free of this threat because they are abundant in the undisturbed fragments that remain after destruction. Here we describe a model that explains multispecies coexistence in patchy habitats4 and which predicts that their abundance may be fleeting. Even moderate habitat destruction is predicted to cause time-delayed but deterministic extinction of the dominant competitor in remnant patches. Further species are predicted to become extinct, in order from the best to the poorest competitors, as habitat destruction increases. More-over, the more fragmented a habitat already is, the greater is the number of extinctions caused by added destruction. Because such extinctions occur generations after fragmentation, they represent a debt—a future ecological cost of current habitat destruction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ehrlich, P. & Ehrlich, A. Extinction (Ballantine Books, New York, 1981).

    Google Scholar 

  2. Wilson, E. O. Biodiversity (National Academy, Washington DC, 1988).

    Google Scholar 

  3. Simberloff, D. Zh. Obshch. Biol. 45, 767–778 (1984).

    Google Scholar 

  4. Tilman, D. Ecology 75, 2–16 (1994).

    Article  Google Scholar 

  5. Levins, R. & Culver, D. Proc. natn. Acad. Sci. U.S.A. 68, 1246–1248 (1971).

    Article  ADS  CAS  Google Scholar 

  6. Horn, H. S. & MacArthur, R. H. Ecology 53, 749–752 (1972).

    Article  Google Scholar 

  7. Cohen, D. & Levin, S. A. Theo. Pop. Bio. 39, 63–99 (1991).

    Article  Google Scholar 

  8. Hastings, A. Theo. Pop. Bio. 18, 363–373 (1980).

    Article  MathSciNet  Google Scholar 

  9. Hanski, I. Ecology 64, 493–500 (1983).

    Article  Google Scholar 

  10. Levin, S. A. & Paine, R. T. Proc. natn. Acad. Sci. U.S.A. 71, 2744–2747 (1974).

    Article  ADS  CAS  Google Scholar 

  11. Gaines, S. & Roughgarden, J. Proc. natn. Acad. Sci. U.S.A. 82, 3707–3711 (1985).

    Article  ADS  CAS  Google Scholar 

  12. Harrison, S., Murphy, D. D. & Ehrlich, P. R. Am. Nat. 132, 360–382 (1988).

    Article  Google Scholar 

  13. Hanski, I. in Living in a Patchy Environment (eds Shorrocks, B. & Swingland, I. R.) 127–145 (Oxford Univ. Press, UK, 1990).

    Google Scholar 

  14. Shorrocks, B. Biol. J. Linn. Soc. 43, 211–220 (1991).

    Article  Google Scholar 

  15. Sale, P. F. The Ecology of Fishes on Coral Reefs (Academic, New York, 1991).

    Google Scholar 

  16. Doherty, P. & Fowler, T. Science 263, 935–939 (1994).

    Article  ADS  CAS  Google Scholar 

  17. Werner, P. A. & Platt, W. J. Am. Nat. 110, 959–971 (1976).

    Article  Google Scholar 

  18. Shmida, A. & Ellner, S. Vegetatio 58, 29–55 (1984).

    Google Scholar 

  19. Grubb, P. J. in Community Ecology (eds Diamond, J. & Case, T.) 207–226 (Harper & Row, New York, 1986).

    Google Scholar 

  20. Nee, S. & May, R. M. J. Anim. Ecol. 61, 37–40 (1992).

    Article  Google Scholar 

  21. May, R. M. in Ecology and Evolution of Communities (eds Cody, M. L. & Diamond, J. M.) 81–120 (Harvard Univ. Press, Cambridge, MA, 1975).

    Google Scholar 

  22. Diamond, J. M. Proc. natn. Acad. Sci. U.S.A. 69, 3199–3203 (1972).

    Article  ADS  CAS  Google Scholar 

  23. Terborgh, J. BioScience 24, 715–722 (1974).

    Article  Google Scholar 

  24. Case, T. J., Bolger, D. T. & Richman, A. D. in Conservat. Biology (eds Fielder, P. L. & Jain, S. K.) 91–125 (Chapman & Hall, New York, 1992).

    Book  Google Scholar 

  25. Lovejoy, T. E. et al. in Extinctions (ed. Nitecki, M. H.) 295–325 (Univ. of Chicago Press, Chicago, 1984).

    Google Scholar 

  26. Bucher, E. H. Curr. Ornithol. 9, 1–36 (1992).

    Google Scholar 

  27. Chapin, F. S. A. Rev. Ecol. System. 11, 233–260 (1980).

    Article  CAS  Google Scholar 

  28. Pastor, J., Aber, J. D., McClaugherty, C. A. & Melillo, J. M. Am. Mid. Nat. 108, 266–277 (1982).

    Article  Google Scholar 

  29. Tilman, D. & Downing, J. A. Nature 367, 363–365 (1994).

    Article  ADS  Google Scholar 

  30. Naeem, S., Thompson, L., Lawler, S., Lawton, J. H. & Woodfin, R. Nature 368, 734–737 (1994).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tilman, D., May, R., Lehman, C. et al. Habitat destruction and the extinction debt. Nature 371, 65–66 (1994). https://doi.org/10.1038/371065a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/371065a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing