Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Importance of vegetation in removing polycyclic aromatic hydrocarbons from the atmosphere

Abstract

ANTHROPOGENIC semi-volatile organic compounds such as polycyclic aromatic hydrocarbons (PAHs) are highly lipophilic (which makes them likely to accumulate in animal tissue), and some are carcinogenic or mutagenic1. Although such compounds are known to accumulate in vegetation2–5, little is known about the quantitative role played by vegetation in removing them from the atmosphere. We have developed a mass-balance model for PAHs for the northeast of the United States, based on measurements of PAHs in soil and vegetation from Bloomington, Indiana, and published values for PAH concentrations and fluxes in air, water, sediments and soils. Our model shows that 44±18% of the PAHs emitted into the atmosphere from sources in this region are removed by vegetation. Although the equilibrium between the atmosphere and vegetation depends on ambient temperature6, we believe that most of the PAHs absorbed by vegetation at the end of the growing season are incorporated into the soil7,8 and permanently removed from the atmosphere.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Evaluation and Estimation of Potential Carcinogenic Risks of Polynuclear Aromatic Hydrocarbons (Office of Research and Development, US Environmental Protection Agency, Washington DC, 1985).

  2. Jones, K. C., Sanders, G., Wild, S. R., Burnett, V. & Johnson, A. E. Nature 356, 137–139 (1992).

    Article  ADS  CAS  Google Scholar 

  3. Eriksson, G., Hensen, S., Kylin, H. & Strachan, W. Nature 341, 42–44 (1989).

    Article  ADS  CAS  Google Scholar 

  4. Calamari, D. et al. Envir. Sci. Technol. 25, 1489–1495 (1991).

    Article  ADS  CAS  Google Scholar 

  5. Hermanson, M. H. & Hites, R. A. Envir. Sci. Technol. 24, 666–671 (1990).

    Article  ADS  CAS  Google Scholar 

  6. Simonich, S. L. & Hites, R. A. Envir. Sci. Technol. 28, 939–943 (1994).

    Article  ADS  CAS  Google Scholar 

  7. Matzner, E. Wat. Air & Soil Pollut. 21, 425–434 (1984).

    Article  ADS  CAS  Google Scholar 

  8. Smith, W. H., Hale, R. C., Greaves, J. & Huggett, R. J. Envir. Sci. Technol. 27, 2244–2246 (1993).

    Article  ADS  CAS  Google Scholar 

  9. Ramdahl, T., Alfheim, I. & Bjorseth, A. in Mobile Source Emissions including Polycyclic Organic Species (eds Rondia, D., Cooke, M. & Haroz, R. K.) 277–298 (Reidel, Dordrecht, 1983).

    Book  Google Scholar 

  10. Schulze, E.D. in Encyclopedia of Plant Physiology Vol. 12 B (eds Lange, O. L., Osmond, C. B. & Ziegler, H.) 615–676 (Springer, Berlin, 1982).

    Google Scholar 

  11. Jarvis, P. G. in Physiological Processes Limiting Plant Productivity (ed. Johnson, C. B.) 81–107 (Butterworths, London, 1981).

    Book  Google Scholar 

  12. Redelfs, M. S., Stone, L. R., Kanemasu, E. T. & Kirkham, M. B. Argon, J. 79, 254–259 (1987).

    Google Scholar 

  13. Menzie, C. A., Potocki, B. B. & Santodonato, J. Envir. Sci. Technol. 26, 1278–1284 (1992).

    Article  ADS  CAS  Google Scholar 

  14. Jones, K. C. et al. Envir. Sci. Technol. 23, 95–101 (1989).

    Article  ADS  CAS  Google Scholar 

  15. Harrison, R. M. & Johnston, W. R. Sci. tot. Envir. 46, 121–135 (1985).

    Article  CAS  Google Scholar 

  16. McVeety, B. D. & Hites, R. A. Atmos. Envir. 22, 511–536 (1988).

    Article  CAS  Google Scholar 

  17. Gschwend, P. M. & Hites, R. A. Geochim. cosmochim. Acta. 45, 2359–2367 (1981).

    Article  ADS  CAS  Google Scholar 

  18. Christensen, E. R. & Zhang, X. Envir. Sci. Technol. 27, 139–146 (1993).

    Article  ADS  CAS  Google Scholar 

  19. Baker, J. E., Eisenrich, S. J. & Eadie, B. J. Envir. Sci. Technol. 25, 500–509 (1991).

    Article  ADS  CAS  Google Scholar 

  20. Beymer, T. D. & Hites, R. A. Envir. Sci. Technol. 22, 1311–1319 (1988).

    Article  ADS  Google Scholar 

  21. Kamens, R. M., Guo, J., Guo, Z. & McDow, S. R. Atmos. Envir. 24A, 1161–1173 (1990).

    Article  ADS  CAS  Google Scholar 

  22. Alebic-Juretic, A., Cvitas, T. & Klasinc, L. Envir. Sci. Technol. 24, 62–66 (1990).

    Article  ADS  CAS  Google Scholar 

  23. Pitts, J. N. Jr et al. Chemosphere 15, 675–685 (1986).

    Article  ADS  CAS  Google Scholar 

  24. Kwok, E. S. C., Harger, W. P., Arey, J. & Atkinson, R. Envir. Sci. Technol. 28, 521–527 (1994).

    Article  ADS  CAS  Google Scholar 

  25. Siak, J., Chan, T. L., Gibson, T. L. & Wolff, G. T. Atmos. Envir. 19, 369–376 (1985).

    Article  CAS  Google Scholar 

  26. Schroeder, W. H. & Lane, D. A. Envir. Sci. Technol. 22, 240–246 (1988).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simonich, S., Hites, R. Importance of vegetation in removing polycyclic aromatic hydrocarbons from the atmosphere. Nature 370, 49–51 (1994). https://doi.org/10.1038/370049a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/370049a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing