Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Atomic-resolution chemical analysis using a scanning transmission electron microscope

A Corrigendum to this article was published on 09 November 2006

Abstract

THE high angle elastic scattering of electrons in scanning transmission electron microscopy depends strongly on the atomic number Z, of the sample atoms, through the Z2 dependence of the Rutherford scattering cross-section1. The detection of scattered electrons at high angles and over a large angular range (75& ndash;150 milliradians) removes the coherent effects of diffraction, and the resulting incoherent image provides a compositional map of the sample with high atomic-number contrast1. If a fine electron probe is used, and the sample is a crystalline material oriented along one of its principal axes, individual columns of atoms can be imaged in this way2. Electrons scattered at low angles are not used in this detection scheme, and are thus available for simultaneous electron energy-loss spectroscopy3; in principle, this combination of techniques should allow the direct chemical analysis of single atomic columns in crystalline materials. Here we present electron energy-loss spectra from expitaxial interfaces between cobalt silicide and silicon, which confirm that atomic resolution can be achieved by this approach. The ability to correlate structure and chemistry with atomic resolution holds great promise for the detailed study of defects and interfaces.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Pennycook, S. J. & Boatner, L. A. Nature 336, 565–567 (1988).

    Article  CAS  ADS  Google Scholar 

  2. Pennycook, S. J. & Jesson, D. E. Phys. Rev. Lett. 64, 938–941 (1990); Acta Metall. Mater. 40, S149–S159 (1992).

    Article  CAS  ADS  Google Scholar 

  3. Crewe, A. V., Wall, J. & Langmore, J. Science 168, 1338–1340 (1970).

    Article  CAS  ADS  Google Scholar 

  4. Jesson, D. E. & Pennycook, S. J. in 51st A. Proc. Microsc. Soc. Am. (eds Bailey, G. W. & Rieder, C. L.) 978–979 (San Francisco Press, California, 1993).

    Google Scholar 

  5. Loane, R. F., Xu, P. & Silcox, J. Ultramicroscopy 40, 121–138 (1992).

    Article  Google Scholar 

  6. Browning, N. D. & Pennycook, S. J. Microbeam Analysis 2, 81–89 (1993).

    CAS  Google Scholar 

  7. Browning, N. D., McGibbon, M. M., Chisholm, M. F. & Pennycook, S. J. in 51st A. Proc. Microsc. Soc. Am. (eds Bailey, G. W. & Rieder, C. L.) 576–577 (San Francisco Press, California, 1993).

    Google Scholar 

  8. Pennycook, S. J. Contemp. Phys. 23, 371–400 (1982).

    Article  CAS  ADS  Google Scholar 

  9. Kohl, H. & Rose, H. Adv. Electron. Electron Phys. 65, 175–200 (1985).

    Google Scholar 

  10. Ritchie, R. H. & Howie, A. Phil. Mag. A58, 753–767 (1988).

    Article  Google Scholar 

  11. Allen, L. J. & Rossouw, C. J. Phys. Rev. B42, 11644–11654 (1990).

    Article  CAS  Google Scholar 

  12. Scheinfein, M. R. & Isaacson, M. S. J. Vac. Sci. Technol. B4, 326–332 (1986).

    Article  CAS  Google Scholar 

  13. Batson, P. E. Phys. Rev. B44, 5556–5561 (1991).

    Article  CAS  ADS  Google Scholar 

  14. Browning, N. D., Yuan, J. & Brown, L. M. Phil. Mag. A67, 261–271 (1993).

    Article  Google Scholar 

  15. Browning, N. D., Chisholm, M. F., Pennycook, S. J., Norton, D. P. & Lowndes, D. H. Physica C212, 185–190 (1993).

    Article  CAS  Google Scholar 

  16. Batson, P. E. Ultramicroscopy 47, 133–144 (1992).

    Article  Google Scholar 

  17. de Jong, A. F. & Bulle-Liewma, C. W. T. Phil. Mag. A62, 183–201 (1990).

    Article  CAS  Google Scholar 

  18. Chisholm, M. F., Jesson, D. E., Pennycook, S. J. & Mantl, S. in 51st A. Proc. Microsc. Soc. Am. (eds Bailey, G. W. & Rieder, C. L.) 802–803 (San Francisco Press, California, 1993).

    Google Scholar 

  19. De Crescenzi, M., Derrien, J., Chainet, E. & Orumchian, K. Phys. Rev. B39, 5520–5523 (1989).

    Article  CAS  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Browning, N., Chisholm, M. & Pennycook, S. Atomic-resolution chemical analysis using a scanning transmission electron microscope. Nature 366, 143–146 (1993). https://doi.org/10.1038/366143a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/366143a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing