Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cumulates from strongly depleted mid-ocean-ridge basalt

Abstract

RECENT studies of abyssal peridotites1, mid-ocean-ridge basalts (MORBs)2 and their entrained melt inclusions3,4 have shown that fractional melting of the upwelling sub-oceanic mantle produces magmas with a much wider range of compositions than erupted MORBs. In particular, it seems that strongly depleted primary magmas are routinely produced by melting beneath ridges1. The absence of strongly depleted melts as erupted lavas prompts the question of how long such magmas survive beneath ridges, before their distinctive compositions are concealed by mixing with more enriched magmas. Here we report mineral compositions from a unique suite of oceanic cumulates recovered from DSDP Site 334 (ref. 5), which indicate that the rocks crystallized from basaltic liquids that were strongly depleted in Na, Ti, Zr, Y, Sr and rare-earth elements relative to any erupted MORB. It thus appears that the magmatic plumbing system beneath the Mid-Atlantic Ridge permitted strongly depleted magmas to accumulate in a magma chamber and remain sufficiently isolated to produce cumulate rocks. Even so, spatial heterogeneity in the compositions of high-calcium pyroxenes suggests that in the later stages of solidification these rocks reacted with infiltrating enriched basaltic liquids.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Johnson, K. T. M., Dick, H. J. B. & Shimizu, N. J. geophys. Res. 95, 2661–2678 (1990).

    Article  ADS  Google Scholar 

  2. McKenzie, D. Earth planet Sci. Lett. 72, 149–157 (1985).

    Article  ADS  CAS  Google Scholar 

  3. Sobolev, N. V. & Shimizu, N. Nature 363, 151–154 (1993).

    Article  ADS  CAS  Google Scholar 

  4. Hummler, E. & Whitechurch, H. Earth planet. Sci. Lett. 88, 169–181 (1988).

    Article  ADS  Google Scholar 

  5. Aumento, F. et al. Init. Rep. DSDP Leg 37, 239–273 (1977).

    Google Scholar 

  6. Hodges, F. N. & Papike, J. J. J. geophys. Res. 81, 4135–4151 (1976).

    Article  ADS  CAS  Google Scholar 

  7. Clarke, D. B. & Loubat H. Init. Rep. DSDP Leg 37, 847–856 (1977).

    CAS  Google Scholar 

  8. Symes, R. F., Bevan, J. C. & Hutchison, R. Init. Rep. DSDP Leg 37, 841–845 (1977).

    CAS  Google Scholar 

  9. Tiezzi, L. J. & Scott, R. B. J. geophys. Res. 85, 5438–5454 (1980).

    Article  ADS  CAS  Google Scholar 

  10. Meyer, P. S., Dick, H. J. B. & Thompson, G. Contr. Miner. Petrol. 103, 44–63 (1989).

    Article  ADS  CAS  Google Scholar 

  11. Bloomer, S. H., Natland, J. H. & Fisher, R. L. in Magmatism in the Ocean Basins, Spec. Publ. No. 42 (eds Saunders, A. D. & Norry, M. J.) 107–124 (Geol. Soc. Lond., 1989).

    Google Scholar 

  12. Elthon, D. J. geophys. Res. 92, 658–682 (1987).

    Article  ADS  CAS  Google Scholar 

  13. Hebert, R., Constantin, M. & Robinson, P. T. Proc. ODP Sci. Res. 118, 3–20 (1991).

    CAS  Google Scholar 

  14. Elthon, D., Stewart, M. & Ross, D. K. J. geophys. Res. 97, 15189–15200 (1992).

    Article  ADS  CAS  Google Scholar 

  15. Girardeau, J. & Francheteau, J. Earth planet. Sci. Lett. 115, 137–149 (1993).

    Article  ADS  CAS  Google Scholar 

  16. Grutzeck, M. W., Kridelbaugh, S. J. & Weill, D. F. Geophys. Res. Lett. 1, 273–275 (1974).

    Article  ADS  CAS  Google Scholar 

  17. Navon, O. & Stolper, E. J. Geol. 95, 285–307 (1987).

    Article  ADS  CAS  Google Scholar 

  18. Takazawa, E., Frey, F. A., Shimizu, N., Obata, M. & Bodinier, J. L. Nature 359, 55–58 (1992).

    Article  ADS  CAS  Google Scholar 

  19. Bodinier, J. L., Vasseur, G., Vernieres, J., Dupuy, C. & Fabries, J. J. Petrol. 31, 597–628 (1990).

    Article  ADS  Google Scholar 

  20. Sinton, J. M. & Detrick, R. S. J. geophys. Res. 97, 197–216 (1992).

    Article  ADS  CAS  Google Scholar 

  21. Hart, S. R. & Dunn, T. Contr. Miner. Petrol. 113, 1–8 (1993).

    Article  ADS  CAS  Google Scholar 

  22. Johnson, K. T. M. & Kinzler, R. J. EOS 70, 1388 (1989).

    Google Scholar 

  23. Dunn, T. Contr. Miner. Petrol. 96, 476–484 (1987).

    Article  ADS  CAS  Google Scholar 

  24. LeRoex, A. P. et al. J. Petrol. 97, 197–216 (1992).

    Google Scholar 

  25. Frey, F. A., Bryan, W. B. & Thompson, G. J. geophys. Res. 79, 5507–5525 (1974).

    Article  ADS  CAS  Google Scholar 

  26. Bender, J. F., Langmuir, C. H. & Hanson, G. N. J. Petrol. 25, 213–254 (1984).

    Article  ADS  CAS  Google Scholar 

  27. Dostal, J. & Mueke, G. K. Init. Rep. DSDP Leg 37, 574–575 (1977).

    Google Scholar 

  28. McKay, G. A., Wagstaff, J. & Yang, S.-R. Geochim. cosmochim. Acta 50, 927–937 (1986).

    Article  ADS  CAS  Google Scholar 

  29. Fujimaki, H., Mitsunobu, T. & Aoki, K. J. geophys. Res. 89, B662–B672 (1984).

    Article  Google Scholar 

  30. Anders, E. & Ebihara, M. Geochim. cosmochim. Acta 46, 2363–2380 (1982).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ross, K., Elthon, D. Cumulates from strongly depleted mid-ocean-ridge basalt. Nature 365, 826–829 (1993). https://doi.org/10.1038/365826a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/365826a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing