Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The cosmological deceleration parameter estimated from the angular-size/redshift relation for compact radio sources

Abstract

IN cosmological models based on the standard Friedmann–Robertson–Walker geometry, the apparent flux density or angular size of standard candles or standard rods varies with redshift in a way that depends on the deceleration parameter q0. (Open universes have q0 < 0.5; closed universes have q0 > 0.5.) At low redshift, however, observational errors are much greater than the differences in q0 expected for different cosmological models, while at high redshift observational uncertainties, particularly at optical wavelengths, and apparent systematic evolutionary changes in sources obscure the expected geometrical effects. Here I show that measurements by very-long-baseline interferometry (VLBI) of compact radio sources associated with active galaxies and quasars may be largely free of evolutionary effects even at substantial redshifts. The relation between angular size and redshift for a sample of these sources indicates a value of q0 close to 0.5, corresponding to cosmological density near the critical value.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hoyle, F. in Paris Symp. Radio Astronomy, IAU Symp. No 9 (ed. Bracewell. R.) 529–532 (1959).

  2. Sandage, A. R. Astrophys. J. 133, 355–392 (1961).

    Article  ADS  MathSciNet  Google Scholar 

  3. Sandage, A. R. Astrophys. J. 173, 485–499 (1973).

    Article  ADS  Google Scholar 

  4. Sandage, A. R. A. Rev. Astr. Astrophys. 26, 561–630 (1988).

    Article  ADS  Google Scholar 

  5. Miley, G. K. Mon. Not. R. astr. Soc. 152, 477–489 (1970).

    Article  ADS  Google Scholar 

  6. Legg T. H. Nature 226, 65–67 (1970).

    Article  ADS  CAS  Google Scholar 

  7. Wardle, J. F. C. & Miley, G. K. Astr. Astrophys. 30, 305–315 (1974).

    ADS  Google Scholar 

  8. Kapahi, V. K. in Observational Cosmology. IAU Symp. No. 124 (ed. Hewitt. A. Burbidge, G. & Fang, L. Z.) 251–265 (1987).

  9. Oort, M. J. A., Katgert, P., Steeman, F. W. M. & Windhorst, R. A. Astr. Astrophys. 179, 41–59 (1987).

    ADS  CAS  Google Scholar 

  10. Singal, A. K. Mon. Not. R. astr. Soc. 233, 87–113 (1988).

    Article  ADS  Google Scholar 

  11. Kapahi, V. K. Astr. J. 97, 1–9 (1989).

    Article  ADS  Google Scholar 

  12. Gopal-Krishna & Wiita, P. J. Astrophys. J. 373, 325–335.

  13. Subramanian, K. & Swarup, G. Mon. Not. R. astr. Soc. 247, 237–243.

  14. Cohen, M. H. in BL Lac Objects (ed. Maraschi, L., Maccacaro, T. & Ulrich, M.-H.) 13–21 (1989).

    Book  Google Scholar 

  15. Pearson, T. J. in Parsec Scale Radio Jets (ed. Zensus, A.) 1–12 (1990).

    Google Scholar 

  16. Pearson, T. J. & Readhead, A. C. S. Astrophys. J. 328, 114–142 (1988).

    Article  ADS  Google Scholar 

  17. Wilkinson, P. N., Polatidis, A., Readhead, A. C. S., Xu, W. & Pearson, T. J. in Sub Arc Second Radio Astronomy (ed. Davis, R. J.) (Cambridge Univ. Press, in the press).

  18. Gurvits, L. I. et al. Astr. Astrophys. 260, 82–88 (1992).

    ADS  Google Scholar 

  19. Ekhart, A. et al. Astr. Astrophys. Suppl. Soc. 67, 121–146 (1987).

    ADS  Google Scholar 

  20. Wehrele, A. et al. Astrophys. J. 391, 589–607 (1992).

    Article  ADS  Google Scholar 

  21. Kellermann, K. I., Sramek, R., Schmidt, M. & Shaffer, D. B. Astr. J. 98, 1195–1207 (1989).

    Article  ADS  Google Scholar 

  22. Fanaroff, B. L. & Riley, J. M. Mon. Not. R. astr. Soc. 167, 31p–35p (1974).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kellermann, K. The cosmological deceleration parameter estimated from the angular-size/redshift relation for compact radio sources. Nature 361, 134–136 (1993). https://doi.org/10.1038/361134a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/361134a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing