Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Deriving global climate sensitivity from palaeoclimate reconstructions

Abstract

To assess the future impact of anthropogenic greenhouse gases on global climate, we need a reliable estimate of the sensitivity of the Earth's climate to changes in radiative forcing. Climate sensitivity is conventionally defined as the equilibrium surface temperature increase for carbon dioxide doubling, ΔT2x. Uncertainties in cloud processes spread general circulation model (GCM) estimates of this parameter over the range 1.5< ΔT2x <4.5°C (refs 1, 2). An alternative to model-based estimates is in principle available from the reconstruction of past climates3–6, which implicitly includes cloud feedback. Here we retrieve the sensitivity of two palaeoclimates, one colder and one warmer than present, by independently reconstructing both the equilibrium surface tem-perature change and the radiative forcing. Our results yield ΔT2x = 2.3 ±0.9 °C. This range is comparable with estimates from GCMs and inferences from recent temperature observations and ocean models7,8. Future application of the method to additional climates in the geological record might constrain climate sensitivity enough to narrow the model uncertainties of global warming predictions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Cess, R. D. et al. Science 245, 513–516 (1989).

    Article  ADS  CAS  Google Scholar 

  2. Houghton, J. T. et al. (eds) Climate Change: The IPCC Scientific Assessment (Cambridge Univ. Press, 1990).

  3. Lorius, C. et al. Nature 347, 139–145 (1990).

    Article  ADS  CAS  Google Scholar 

  4. Hansen, J. E. & Lacis, A. A. Nature 346, 713–719 (1990).

    Article  ADS  CAS  Google Scholar 

  5. MacCracken, M. C. et al. (eds) Prospects for Future Climate: A Special US/USSR Report on Climate and Climate Change (Lewis, Chelsea, Michigan, 1990).

  6. Budyko, M. I. & Izrael, Y. A. Anthropogenic Climate Change, 277–318 (Univ. of Arizona Press, Tucson, 1991).

    Google Scholar 

  7. Wigley, T. M. L. & Raper, S. C. B. in Climate Change: Science, Impacts and Policy (eds Jäger. J. & Ferguson, H. L.) 231–242 (Cambridge Univ. Press, 1992).

    Google Scholar 

  8. Schlesinger, M. E. & Jiang, X. Nature 350, 219–221 (1991).

    Article  ADS  Google Scholar 

  9. Shine, K. P. et al. in Climate Change: The IPCC Scientific Assessment (eds Houghton, J. T., Jenkins, G. & Ephraums, J. J.) 41–68 (Cambridge Univ. Press, 1990).

    Google Scholar 

  10. Mitchell, J. F. B. Rev. Geophys. 27, 115–139 (1989).

    Article  ADS  Google Scholar 

  11. Manabe, S. & Weatherland, R. T. J. atmos. Sci., 24, 241–259 (1967).

    Article  ADS  CAS  Google Scholar 

  12. Raval, A. & Ramanathan, V. Nature 342, 758–761 (1989).

    Article  ADS  Google Scholar 

  13. Lindzen, R. S. Bull. Am. met. Soc. 71, 288–299 (1990).

    Article  Google Scholar 

  14. Hoffert, M. I. et al. J. geophys. Res. 85 (C11) 6667–6679 (1980).

    Article  ADS  Google Scholar 

  15. Wigley, T. M. L. & Raper, S. C. B. in Climate and Sea Level Changes: Observations, Projections and Implications (eds Warrick, R. A., Barrow, E. M. & Wigley, T. M. L.) (Cambridge Univ. Press, in the press).

  16. Charlson, R. J. et al. Science 255, 423–430 (1992).

    Article  ADS  CAS  Google Scholar 

  17. Wigley, T. M. L. & Raper, S. C. B. Nature 357, 293–300 (1992).

    Article  ADS  CAS  Google Scholar 

  18. Schlesinger, M. E., Jiang, X. & Charlson, R. J. in Climate Change and Energy Policy (eds Rosen, L. & Glasser, R.) 75–108 (American Institute of Physics, New York, 1992).

    Google Scholar 

  19. Crowley, T. J. & North, G. Paleoclimatology (Oxford Univ. Press, 1991).

    Google Scholar 

  20. Deblonde, G. & Peltier, W. R. Clim. Dynam. 5, 103–110 (1990).

    Article  ADS  Google Scholar 

  21. Manabe, S. & Broccoli, A. J. J. atmos. Sci., 42, 2643–2651 (1985).

    Article  ADS  Google Scholar 

  22. Harvey, L. D. D. J. geophys. Res. 94 (D10), 12873–12884 (1989).

    Google Scholar 

  23. Baliunas, S. & Jastrow, R. Nature 348, 520–523 (1990).

    Article  ADS  Google Scholar 

  24. Chappellaz, J. et al. Nature 345, 127–131 (1990).

    Article  ADS  CAS  Google Scholar 

  25. Delmas, R. J. & Legrand, M. in The Environmental Record in Glaciers and Ice Sheets (eds Oeschger, H. & Langway, C. C.) 319–341 (Wiley, New York, 1989).

    Google Scholar 

  26. Harvey, L. D. D. Nature 334, 333–335 (1988).

    Article  ADS  Google Scholar 

  27. Anderson, T. L. & Charlson, R. J. Nature 345, 393 (1990).

    Article  ADS  Google Scholar 

  28. Newman, M. J. & Rood, R. T. Science 198, 1035–1037 (1977).

    Article  ADS  CAS  Google Scholar 

  29. Thompson, S. L. & Barron, E. J. J. Geol. 89, 143–167 (1981).

    Article  ADS  Google Scholar 

  30. Kiehl, J. T. & Dickinson, R. E. J. geophys. Res. 92(D3), 2991–2998 (1987).

    Google Scholar 

  31. Budyko, M. I., Ronov, A. B. & Yanshin, A. L. History of the Earth's Atmosphere (Springer. New York, 1987).

    Book  Google Scholar 

  32. Berger, W. H. & Spitzy, A. Paleoceanography 3, 401–411 (1988).

    Article  ADS  Google Scholar 

  33. Popp, B. N. et al. Am. J. Sci. 289, 436–454 (1989).

    Article  ADS  CAS  Google Scholar 

  34. Berner, R. A. Science 249, 1382–1386 (1990).

    Article  ADS  CAS  Google Scholar 

  35. Berner, R. A. Nature 358, 114 (1992).

    Article  ADS  Google Scholar 

  36. Minkoff, J. Signals. Noise & Active Sensors (Wiley, New York. 1992).

    Google Scholar 

  37. Crowley, T. J. J. Clim. 3, 1282–1292 (1990).

    Article  ADS  Google Scholar 

  38. Barron, E. J. Paleoceanography 2, 729–739 (1987).

    Article  ADS  Google Scholar 

  39. CLIMAP Project Members Science 191, 1131–1137 (1976).

  40. Dansgaard, W. et al. in Climate Processes and Climate Sensitivity (eds Hansen, J. E. & Takahashi, T.) 288–298 (American Geophysical Union, Washington DC, 1984).

    Book  Google Scholar 

  41. Bradley, R. S. Quaternary Paleoclimatology, 132 (Unwin Hyman, Boston, 1985).

    Google Scholar 

  42. Johnsen, S. J. et al. Nature 359, 311–313 (1992).

    Article  ADS  Google Scholar 

  43. Barron, E. J. & Washington, W. M. in The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present (eds Sundquist, E. T. & Broecker, W. S.) 546–553 (American Geophysical Union, Washington DC, 1985).

    Google Scholar 

  44. Stute, M. et al. Science 256, 1000–1003 (1992).

    Article  ADS  CAS  Google Scholar 

  45. Emiliani, C. Science 257, 1462 (1992).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoffert, M., Covey, C. Deriving global climate sensitivity from palaeoclimate reconstructions. Nature 360, 573–576 (1992). https://doi.org/10.1038/360573a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/360573a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing