Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The stability of hydrocarbons under the time–temperature conditions of petroleum genesis

Abstract

THE contention that hydrocarbons are unstable under the time-temperature conditions of petroleum generation (catagenesis) enjoys broad acceptance1–6. At temperatures in the region of 100–150 °C, hydrocarbons are believed to decompose progressively over geological time to lighter hydrocarbons, ultimately methane and pyrobitumen7,8. There are geological contradictions to this view9, however, and the recent finding10 that the cycloalkane ring should remain stable for billions of years under catagenic conditions demands a review of its underlying assumptions. For example, are ordinary hydrocarbons unstable under catagenic conditions? Are the light hydrocarbons, including methane, produced through the thermal decomposition of higher-molecular-weight hydrocarbons? Here I address these questions from two independent perspectives. First, the relative stabilities of hydrocarbons and their kerogenous precursors are studied experimentally. Second, the compositions of natural petroleum deposits are analysed for evidence of thermal decomposition. The results suggest that the hydrocarbons in petroleum should be at least three orders of magnitude more stable than their kerogenous precursors under catagenic conditions, and that natural deposits of petroleum and gas do not contain cycloalkane and isoalkane contents indicative of progressive thermal decomposition to gas. Thus the assumption that hydrocarbons are unstable under catagenic conditions and progressively decompose to methane and pyrobitumen seems to be incorrect.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Landes, K. K. Bull. Am. Ass. Petrol. Geol. 51, 828–841 (1967).

    CAS  Google Scholar 

  2. Colombo, U. in Aspects of Petroleum Geochemistry (eds Nagy, B. & Colombo, U.) 331–369 (Elsevier, New York, 1967).

    Google Scholar 

  3. Evans, C. R., Rogers, M. A. & Bailey, N. J. L. Chem. Geol. 8, 147–170 (1971).

    Article  ADS  CAS  Google Scholar 

  4. Hunt, J. M. Petroleum Geochemistry and Geology (ed. Gilluly, J.) 119–185 (Freeman, San Francisco, 1979).

    Google Scholar 

  5. Waples, D. W. Colorado Sch. Mines Quarterly 78, 15–30 (1983).

    CAS  Google Scholar 

  6. Tissot, B. P. & Welte, D. H. Petroleum Formation and Occurrence, 69–267 (Springer, New York, 1984).

    Google Scholar 

  7. Takach, N. E., Barker, C. & Kemp, M. K. Bull. Am. Ass. Petrol. Geol. 77, 322–333 (1987).

    Google Scholar 

  8. Barker, C. Bull. Am. Assoc. Petrol. Geol. 74, 1254–1261 (1990).

    CAS  Google Scholar 

  9. Price, L. C. J. Petrol. Geol. 6, 5–38 (1983).

    Article  ADS  CAS  Google Scholar 

  10. Mango, F. D. Geochim. cosmochim. Acta 54, 23–27 (1990).

    Article  ADS  CAS  Google Scholar 

  11. Wall, L. A. Nat. Bur. Stand. spec. Publ. 357, 47–60 (1972).

    Google Scholar 

  12. Appleby, W. G., Avery, W. H. & Meerbott, W. K. J. Am. chem. Soc. 69, 2279–2285 (1947).

    Article  CAS  Google Scholar 

  13. Orr, W. L. Org. Geochem. 10, 499–516 (1985).

    Article  Google Scholar 

  14. Bandurski, E. Energy Sources 6, 47–66 (1982).

    Article  CAS  Google Scholar 

  15. Pelet, R., Behar, F. & Monin, J. C. Org. Geochem. 10, 481–498 (1985).

    Article  Google Scholar 

  16. Cassani, F. & Eglinton, G. Chem. Geol. 56, 167–183 (1986).

    Article  ADS  CAS  Google Scholar 

  17. McNab, J. G., Smith, P. V. & Betts, R. L. Ind. Engng. Chem. 44, 2556–2563 (1952).

    Article  CAS  Google Scholar 

  18. Ungerer, P. Org. Geochem. 16, 1–25 (1990).

    Article  CAS  Google Scholar 

  19. Mushrush, G. W. & Hazlett, R. N. Ind. Engng. Chem. 23, 288–294 (1984).

    Article  CAS  Google Scholar 

  20. Quigley, T. M. & Mackenzie, A. S. Nature 333, 549–552 (1988).

    Article  ADS  CAS  Google Scholar 

  21. Mango, F. D. Geochim. cosmochim. Acta 54, 1315–1323 (1990).

    Article  ADS  CAS  Google Scholar 

  22. Orr, W. L. Bull. Am. Ass. Petrol. Geol. 50, 2295–2318 (1974).

    Google Scholar 

  23. Raaben, V. F., Kalinin, N. A., Galimova, L. V. & Petrikevich, E. N. Int. Geol. Rev. (USA) 17, 1317–1321 (1975).

    Article  Google Scholar 

  24. Mango, F. D. Science 273, 514–517 (1987).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mango, F. The stability of hydrocarbons under the time–temperature conditions of petroleum genesis. Nature 352, 146–148 (1991). https://doi.org/10.1038/352146a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/352146a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing