Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Model estimates of CO2 emissions from soil in response to global warming

Abstract

ONE effect of global warming will be to accelerate the decomposition of soil organic matter, thereby releasing CO2 to the atmosphere, which will further enhance the warming trend1–7. Such a feedback mechanism could be quantitatively important, because CO2 is thought to be responsible for 55% of the increase in radiative forcing arising from anthropogenic emissions of gases to the atmosphere8, and there is about twice as much carbon in the top metre of soil as in the atmosphere9. Here we use the Rothamsted model for the turnover of organic matter in soil3 to calculate the amount of CO2 that would be released from the world stock of soil organic matter if temperatures increase as predicted, the annual return of plant debris to the soil being held constant. If world temperatures rise by 0.03 °C yr−1 (the increase considered as most likely by the Intergovernmental Panel on Climate Change8), we estimate that the additional release of CO2 from soil organic matter over the next 60 years will be 61 × 1015 gC. This is 19% of the CO2 that will be released by combustion of fossil fuel during the next 60 years if present use of fuel continues unabated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Schleser, G. H. Z. Naturf. A37, 287–219 (1981).

    ADS  Google Scholar 

  2. Kohlmaier, H., Janacek, A. & Kindermann, J. in Soils and the Greenhouse Effect (ed. Bouwman, A. F.) 415–422 (Wiley, Chichester, 1990).

    Google Scholar 

  3. Jenkinson, D. S. Phil. Trans. R Soc. Lond. B329, 361–368 (1990).

    Article  CAS  Google Scholar 

  4. Lashof, D. A. Clim. Change 14, 213–242 (1989).

    Article  ADS  CAS  Google Scholar 

  5. Schimel, D. S., Parton, W. J., Kittel, T. G. F., Ojima, D. S. & Cole, C. V. clim. Change 17, 13–25 (1990).

    Article  ADS  Google Scholar 

  6. Tinker, P. B. & Ineson, P. in Soils on a Warmer Earth (eds Scharpenseel, H. W., Schomaker, M. & Ayoub, A.) 71–87 (Elsevier, Amsterdam, 1990).

    Google Scholar 

  7. Franz, E. H. in Soils on a Warmer Earth (eds Scharpenseel, H. W., Schomaker, M. & Ayoub, A.) 109–120 (Elsevier, Amsterdam, 1990).

    Google Scholar 

  8. Intergovernmental Panel on Climate Change (eds Houghton, J. T., Jenkins, G. J. & Ephraums, J. J.) (Cambridge University Press, 1990).

  9. Post, W. M., Emanuel W. R., Zinke, P. J. & Stangenberger, A. G. Nature 289, 156–159 (1982).

    Article  ADS  Google Scholar 

  10. Jenkinson, D. S., Hart, P. B. S., Rayner, J. H. & Parry, L. C. INTECOL Bull. 15, 1–8 (1987).

    Google Scholar 

  11. Jenkinson, D. S. J. Soil Sci. 28, 424–434 (1977).

    Article  CAS  Google Scholar 

  12. Ayanaba, A. & Jenkinson, D. S. Soil Sci. Soc. Am. J. 54, 112–115 (1990).

    Article  ADS  Google Scholar 

  13. Oberlander, H. E. Scr. varia pont. Acad Sci. 38, 1001–1062 (1973).

    Google Scholar 

  14. Nyhan, J. W. Soil Sci. Soc. Am. J. 39, 643–648 (1975).

    Article  ADS  CAS  Google Scholar 

  15. Ladd, J. N., Oades, J. M. & Amato, M. Soil Biol. Biochem. 13, 119–126 (1981).

    Article  CAS  Google Scholar 

  16. Gonzalez, A. M. A. & Sauerbeck, D. R. in Regional Colloquium on Soil Organic Matter Studies (eds Cerri, C. C., Athie, D. & Sodrzeieski, D.) 141–146 (CENA/USP & PROMOCET, Piracicaba, 1982).

    Google Scholar 

  17. Neue, H. U. & Scharpenseel, H. W. Sci. Total Envir. 62, 431–434 (1987).

    Article  CAS  Google Scholar 

  18. Voroney, R. P., Paul, E. A. & Anderson, D. W. Can. J. Soil Sci. 69, 63–77 (1989).

    Article  Google Scholar 

  19. Holdridge, L. R. Life Zone Ecology (Tropical Science Center, San Jose, 1964).

    Google Scholar 

  20. Crutzen, P. J. & Andreae, M. O. Science 250, 1669–1678 (1990).

    Article  ADS  CAS  Google Scholar 

  21. Schlesinger, W. H. Ann. Rev. ecol. Syst. 8, 51–81 (1977).

    Article  CAS  Google Scholar 

  22. Adams, J. W., Faure, H., Faure-Denard, L., McGlade, J. M. & Woodward, F. I. Nature 348, 711–714 (1990).

    Article  ADS  CAS  Google Scholar 

  23. Prentice, K. C. & Fung, I. Y. Nature 346, 48–51 (1990).

    Article  ADS  Google Scholar 

  24. Schlesinger, W. H. Nature 348, 232–234 (1990).

    Article  ADS  CAS  Google Scholar 

  25. Müller, M. J. Selected Climatic Data for a Global Set of Standard Stations for Vegetation Science (Junk, The Hague, 1982).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jenkinson, D., Adams, D. & Wild, A. Model estimates of CO2 emissions from soil in response to global warming. Nature 351, 304–306 (1991). https://doi.org/10.1038/351304a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/351304a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing