Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Apolactoferrin structure demonstrates ligand-induced conformational change in transferrins

Abstract

PROTEINS of the transferrin family, which contains serum transferri n and lactoferrin, control iron levels in higher animals through their very tight (Kapp ~1020) but reversible binding of iron1,2. These bilobate molecules3,4 have two binding sites, one per lobe, each housing one Fe3+ and the synergistic CO323 ion5. Crystallographic studies of human lactoferrin4,6 and rabbit serum transferrin7 in their iron-bound forms have characterized their binding sites and protein structure. Physical studies8,9 show that a substantial conformational change accompanies iron binding and release. We have addressed this phenomenon through crystal structure analysis of human apolactoferrin at 2.8 Å resolution. In this structure the N-lobe binding cleft is wide open, following a domain rotation of 53°, mediated by the pivoting of two helices and flexing of two interdomain polypeptide strands. Remarkably, the C-lobe cleft is closed, but unliganded. These observations have implications for transferrin function and for binding proteins in general.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Aisen, P. & Listowsky, I. A. Rev. Biochem. 49, 357–393 (1980)

    Article  CAS  Google Scholar 

  2. Brock, J. H. in Metalloproteins Part 2 (ed. Harrison, P. M.) 183–262 (Macmillan, London, 1985).

    Book  Google Scholar 

  3. Gorinsky, B. et al. Nature 281, 157–158 (1979).

    Article  ADS  CAS  Google Scholar 

  4. Anderson, B. F. et al. Proc. natn. Acad. Sci. U.S.A. 84, 1769–1773 (1987).

    Article  ADS  CAS  Google Scholar 

  5. Schlabach, M. R. & Bates, G. W. J. biol. Chem. 250, 2182–2188 (1975).

    CAS  PubMed  Google Scholar 

  6. Anderson, B. F., Baker, H. M., Norris, G. E., Rice, D. W. & Baker, E. N. J. molec. Biol. 209, 711–734 (1989).

    Article  CAS  Google Scholar 

  7. Bailey, S. et al. Biochemistry 27, 5804–5812 (1988).

    Article  CAS  Google Scholar 

  8. Rossenau-Motreff, M. Y. F., Soetewey, R., Lamote, R. & Peeters, H. Biopolymers 10, 1039–1048 (1971).

    Article  Google Scholar 

  9. Kilar, F. & Simon, I. Biophys. J. 48, 799–801 (1985).

    Article  ADS  CAS  Google Scholar 

  10. Norris, G. E., Baker, H. M. & Baker, E. N. J. molec. Biol. 209, 329–331 (1989).

    Article  CAS  Google Scholar 

  11. Bennett, W. S. & Huber, R. CRC Crit. Rev. Biochem. 15, 291–384 (1984).

    Article  CAS  Google Scholar 

  12. Lesk, A. M. & Chothia, C. J. molec. Biol. 174, 175–191 (1984).

    Article  CAS  Google Scholar 

  13. Baker, E. N., Rumball, S. V. & Anderson, B. F. Trends Biochem. Sci. 12, 350–353 (1987).

    Article  CAS  Google Scholar 

  14. Kojima, N. & Bates, G. W. J. biol. Chem. 256, 12034–12039 (1981).

    CAS  PubMed  Google Scholar 

  15. Cowart, R. E., Kojima, N. & Bates, G. W. J. biol. Chem. 257, 7560–7565 (1982).

    CAS  PubMed  Google Scholar 

  16. Thornton, J. M. J. molec. Biol. 151, 261–287 (1981).

    Article  CAS  Google Scholar 

  17. Kretchmar, S. A. & Raymond, K. N. J. Am. Chem. Soc. 108, 6212–6218 (1986).

    Article  CAS  Google Scholar 

  18. Sack, J. S., Saper, M. A. & Quiocho, F. A. J. molec. Biol. 206, 171–191 (1989).

    Article  CAS  Google Scholar 

  19. Kretchmar, S. A. & Raymond, K. N. Inorg. Chem. 27, 1436–1441 (1988).

    Article  CAS  Google Scholar 

  20. Brown, J. P. et al. Nature 296, 171–173 (1982).

    Article  ADS  CAS  Google Scholar 

  21. Mao, B., Pear, M. R., McCammon, J. A. & Quiocho, F. A. J. biol. Chem. 257, 1131–1133 (1982).

    CAS  PubMed  Google Scholar 

  22. Crowther, R. A. in The Molecular Replacement Method (ed. Rossmann, M. G.) 173–178 (Gordon and Breach, New York, 1972).

    Google Scholar 

  23. Sussman, J. L. Meth. Enzymol. 115, 271–303 (1985).

    Article  CAS  Google Scholar 

  24. Tronrud, D. E., Ten Eyck, L. F. & Matthews, B. W. Acta crystallogr. A43, 489–501 (1987).

    Article  CAS  Google Scholar 

  25. Jones, T. A. J. appl. Crystallogr. 11, 268–272 (1978).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andersen, B., Baker, H., Morris, G. et al. Apolactoferrin structure demonstrates ligand-induced conformational change in transferrins. Nature 344, 784–787 (1990). https://doi.org/10.1038/344784a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/344784a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing