Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Origin of the eukaryotic nucleus determined by rate-invariant analysis of rRNA sequences

Abstract

The origin of the eukaryotic nucleus is difficult to reconstruct. Eukaryotic organelles (chloroplast, mitochondrion) are eii bacterial1,2 endosymbionts3,but the source of nuclear genes has been obscured by multiple nucleotide substitutions. Using evolutionary parsimony4, a newly developed rate-invariant treeing algorithm, the eukaryotic ribosomal rRNA genes are shown to have evolved from the eocytes5, a group of extremely thermophilic, sulphur-metabolizing, anucleate cells. The deepest bifurcation yet found separates the reconstructed tree into two taxonomic divisions. These are a proto-eukaryotic group (karyotes) and an essentially bacterial one (parkaryotes). Within the precision of the rooting procedure, the tree is not consistent with either the prokaryotic–eukaryotic or the archaebacterial–eubacterial–eukaryotic groupings. It implies that the last common ancestor of extant life, and the early ancestors of eukaryotes, probably lacked nuclei, metabolized sulphur and lived at near-boiling temperatures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Schwartz, Z. & Kossel, H. Nature 238, 739–772 (1980).

    Article  ADS  Google Scholar 

  2. Spencer, D. F., Schnare, M. N. & Gray, M. W. Proc. natn. Acad. Sci. U.S.A. 81, 493–497 (1984).

    Article  ADS  CAS  Google Scholar 

  3. Margulis, L. Symbiosis in Cell Evolution (Freeman, San Francisco, 1981).

    Google Scholar 

  4. Lake, J. A. Molec. biol. Evol. 4, 167 (1987).

    CAS  PubMed  Google Scholar 

  5. Lake, J. A., Hendersen, E., Oakes, M. & Clark, M. W. Proc. natn. Acad. Sci. U.S.A. 81, 3786–3790 (1984).

    Article  ADS  CAS  Google Scholar 

  6. Felsenstein, J. Syst. Zool. 27, 401–410 (1978).

    Article  Google Scholar 

  7. Li, W. H., Wolfe, K. H., Sourdis, J. & Sharp, P. M. Symp. Quant. Biol. 52 (in the press).

  8. Pace, N. R., Stahl, D. A., Lane, D. J. & Olsen, G. J. Adv. microbiol. Ecol. 1–55 (1986).

  9. Erdmann, V. A. et al. in Endocytobiology III (eds J. J. Lee & J. F. Frederick) (New York Academy of Sciences, 1987).

    Google Scholar 

  10. Lake, J. A. Nature 319, 626 (1986).

    Article  ADS  Google Scholar 

  11. Penny, D. & Hendy, M. D. Cladistics 1(3), 266–278 (1981).

    Article  Google Scholar 

  12. Hickson, J. E. & Brown, W. M. Molec. biol. Evol. 3, 1–18 (1986).

    Google Scholar 

  13. Fitch, W. M. J. molec. Evol. 18, 30–37 (1981).

    Article  ADS  CAS  Google Scholar 

  14. Fitch, W. Am. Nat. 111, 223–257 (1977).

    Article  Google Scholar 

  15. Brown, W. M., Prager, E. M., Wang, A. & Wilson, A. C. J. molec. Evol. 18, 225–239 (1982).

    Article  ADS  CAS  Google Scholar 

  16. Eldridge, N. & Cracraft, J. Phylogenetic Patterns and the Evolutionary Process (Columbia University Press, New York, 1980).

    Google Scholar 

  17. Fox, G. E. et al. Science 209, 457–463 (1980).

    Article  ADS  CAS  Google Scholar 

  18. Larsen, N., Leffers, H., Kjems, J. & Garrett, R. A. System. Appl. Microbiol. 7, 49–57 (1986).

    Article  CAS  Google Scholar 

  19. Zillig, W., Schnabel, R. & Stetter, K. O. Curr. Top. Microbiol. Immun. 33, 1–18 (1985).

    Google Scholar 

  20. Wiley, E. O. Phylogenetics (Wiley, New York, 1981).

  21. Mayr, E. Principles of Systematic Zoology (McGraw-Hill, New York, 1969).

    Google Scholar 

  22. Stetter, K. O. & Gaag, G. Nature 305, 309–311 (1983).

    Article  ADS  CAS  Google Scholar 

  23. Schopf, J. W. Earth's Earliest Biosphere (Princeton University Press, New Jersey, 1983).

    Google Scholar 

  24. Findlay, J. B. C. & Pappin, D. J. C. Biochem. J. 238, 625–642 (1986).

    Article  CAS  Google Scholar 

  25. Lake, J. A. Nature 321, 657–658 (1986).

    Article  ADS  Google Scholar 

  26. Lake, J. A. J. molec. Evol. 26, 59–73 (1987).

    Article  ADS  CAS  Google Scholar 

  27. Wilson, A., Carlson, S. & White, T. A. Rev. Biochem. 46, 573–639 (1977).

    Article  CAS  Google Scholar 

  28. Huysmans, E. & DeWachter, R. Nucleic Acids Res. 14, 73–118 (1986).

    Article  Google Scholar 

  29. McCarroll, R., Olsen, G. J., Stahl, Y. D., Woese, C. R. & Soglin, M. S. Biochemistry 22, 5858–5868 (1983).

    Article  CAS  Google Scholar 

  30. Leinfelder, W., Jarsch, M. & Bock, A. System Appl. Microbiol. 6, 164–170 (1985).

    Article  CAS  Google Scholar 

  31. Allsopp, A. New Phytol. 68, 591–612 (1969).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lake, J. Origin of the eukaryotic nucleus determined by rate-invariant analysis of rRNA sequences. Nature 331, 184–186 (1988). https://doi.org/10.1038/331184a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/331184a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing